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Abstract

We tackle a new task, event graph completion, which aims to predict missing event
nodes for event graphs. Existing link prediction or graph completion methods have difficulty
dealing with event graphs, because they are usually designed for a single large graph such as
a social network or a knowledge graph, rather than multiple small event graphs. Moreover,
they can only predict missing edges rather than missing nodes. In this work, we utilize event
schemas, a type of generalized representation that describes the stereotypical structure of
event graphs, to address these issues. Our schema-guided event graph completion approach
first maps an instance event graph to a schema subgraph. Then it predicts whether a
candidate event node in the schema graph should be instantiated by characterizing two
aspects of local topology: neighbors of both the candidate node and the schema subgraph,
and paths that connect the candidate node and the schema subgraph. The neighbor module
and the path module are later combined together for the final prediction. Experimental
results on four datasets demonstrate that our proposed method achieves state-of-the-art
performance, with 4.3% to 19.4% absolute F1 gains over the best baseline method. The
code and datasets are available at https://github.com/hwwang55/SchemaEGC.

1. Introduction

Event graphs [Glavas and Snajder, 2015] are structured representation of real-world complex
events. An event graph consists of event nodes and entity nodes, as well as their relations in-
cluding event-event temporal links, event-entity argument links, and entity-entity relations.
Event graphs can act as a useful tool to help readers quickly understand and untangle the
progression of complex events. The upper part of Figure 1 gives an example of a complex
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bombing event extracted from a news report, where yellow and green nodes denote events
and entities, respectively.
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event graphs is that they are often incomplete and
noisy, due to reporting bias in the source documents,

assemble:0  detonate:0,

medical
intervention:0
ki

limited coverage of existing ontologies which informa- \*\3 e : enited

tion extraction models are trained on, or the imper- NG invespte e
fect performance of existing information extraction -y

methods [Lin et al., 2020, Li et al., 2021b]. For exam- it . A
ple, in the instance graph in Figure 1, the INJURE:0 , Vel
event probably has an argument PLACE linked to an TrerRert > m o e

entity THE SQUARE, and the next-step event after :, 17 X e
IDENTIFY:0 is also missing. A common solution to N //,,,I/r;"ves“gate,
this problem is to utilize off-the-shelf algorithms for “‘\\7\/ o /
link prediction [Zhang and Chen, 2018, Wang et al., wea

2018, Lei et al., 2019] or graph completion [Zhang

et al., 2019, Goel et al., 2020, Wang et al., 2021] to Figure 1: An example of schema-
refine raw event graphs. However, they have diffi- guided event graph completion. An
culty dealing with event graphs in the following two (incomplete) event instance graph is
aspects: (1) Existing link prediction or graph com- shown on the top half and the cor-
pletion methods usually focus on a single large graph responding schema is shown at the
(e.g., an online social network or knowledge graph bottom. By matching the instance
with thousands or even millions of nodes), but an graph against the schema (dotted
event graph dataset usually consists of multiple small lines), we can predict that there
instance event graphs, each of which is extracted should be an INDICT event following
from a cluster of topically-related news articles and the IDENTIFY:0 event.

contains dozens of nodes only. The instance event

graphs are usually independent (e.g., describing different bombing events) but follow the
similar pattern (e.g., all bombing events are similar), which, unfortunately, cannot be char-
acterized by existing methods. (2) Existing link prediction or graph completion methods
can only detect a missing link between two nodes that already exist in the graph, but
they cannot tell if a new node is missing from the graph and how this new node should
be connected to existing nodes. For example, in the instance graph in Figure 1, existing
link prediction or graph completion methods are incapable of predicting the next-step event
after IDENTIFY:0.

To address the limitations of existing methods, a promising solution is to use event
schemas. An event schema (a.k.a., complex event template) is a generic and abstract rep-
resentation of a specific type of complex events that encodes their stereotpyical structure.
Event schemas can be either generated automatically by machines [Granroth-Wilding and
Clark, 2016, Weber et al., 2018, 2020, Li et al., 2020, 2021a] from a large collection of histor-
ical event graphs, or manually curated by human'. The lower part of Figure 1 illustrates the
schema of general improvised explosive device (IED) bombing, where red and blue nodes
represent the types of events and entities, respectively. We propose to utilize event schemas
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1. Schemas can be curated by human efficiently using curation tools [Mishra et al., 2021]. The high-quality
human curated schemas are available for a wide variety of newsworthy scenarios.
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to help solve the two aforementioned issues: An event schema serves as a template for a
particular type of complex events, which represents the generalized knowledge in this sce-
nario and enables us to model the common pattern of instance graphs; Moreover, an event
schema can be seen as a pool of inter-connected candidate events, which provides us with
new event nodes that can be added into an incomplete instance event graph.

In this paper, we propose a schema-guided approach for event graph completion. Given
an incomplete instance event graph, we aim to predict whether a candidate event node from
the schema graph is missing for the instance graph. To build the alignment between the
schema graph and instance graphs, we propose first using a two-stage heuristic subgraph
matching algorithm to map an instance graph to a subgraph of the schema graph. After
the matching step, our problem is equivalent to inferring whether the candidate node is
missing for the matched subgraph of the schema. We therefore explore two types of local
topology for a subgraph-node pair: (1) Neighbors. It is important to capture the neighboring
node types of a given node/subgraph in the schema graph, because they provide us with
valuable information about what the nature of the given node/subgraph is. For example,
there are two events with the same type of DIE in the schema graph in Figure 1, but the
neighboring events of the first DIE (e.g., EVACUATE, MEDICAL INTERVENTION) indicate
that its subject is a victim of the IED bombing, while the neighboring events of the second
DIE (e.g., SENTENCE, INDICT) indicate that it refers to the death of the attacker. We apply
a graph neural network (GNN) to aggregate information from multi-hop neighboring nodes
in the schema graph, and compute the correlation between the subgraph and the node in
terms of their GNN representations. (2) Paths. Note that modeling only neighboring node
types is not able to identify the distance between the subgraph and the candidate node. It
is also important to capture the set of paths connecting them, which can reveal the nature
of their relation and enable the model to capture the distance between them. For example,
in the schema graph in Figure 1, it is clear that DETONATE is more closely related to the
first DIE than the second DIE, since DETONATE and the first DIE are directly connected,
while the paths connecting DETONATE and the second DIE are much longer. We collect all
paths connecting the candidate node and the subgraph, then use those paths to calculate
their correlation. Finally, we combine these two modules together to predict the probability
that the candidate node is missing for the subgraph.

We conduct experiments on four event graph datasets in the scenarios of IED bombing
and disease outbreak. Experimental results demonstrate that our method achieves state-
of-the-art performance in missing event prediction. For example, our F1 score surpasses
the best baseline method (MLP-based method, TransE, or RotatE) by 7.0%, 19.4%, 11.5%,
and 4.3%, respectively, on the four datasets. Moreover, our ablation study and case study
verify the effectiveness of the proposed neighbor module and path module.

2. Problem Formulation

We formulate the problem of schema-guided event graph completion as follows. Suppose
we have a set of instance event graphs Z = {Ij,Is,---}, which are constructed from a
set of articles with the same topic (e.g., car bombing). Each instance graph I describes
a complex event and consists of an event node set {e;} and an entity node set {v;}, in
which each node e; or v; is instantiated as a real event or entity. In addition, each event
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Figure 2: Tllustration of the model architecture. (a) The input instance graph and schema
graph; (b) Matching the instance graph to a subgraph of schema. (c) The neighbor module;
(d) The path module; (e¢) Combining the two modules and output final prediction.

or entity is also associated with a specific event or entity type, and we use 7(-) to denote
the mapping function from a node to its type. Accordingly, there are three types of links
in instance graphs: (1) event-event temporal link (e;, e;), which indicates that event e;
happens chronologically after event e;, and we use “TEMP” to denote the type of temporal
links; (2) event-entity link (e;, a,v;), which indicates that event e; has an argument role
a, whose value is entity v;; (3) entity-entity link (v;,r,v;), which indicates that there is a
relation 7 between entity e; and e;. We also use function 7(-) to denote the type of a link.
Specifically, 7((e;, e;)) = TEMP, 7({e;, a,v;)) = a, and 7({v;,r,v;)) = r. Moreover, we also
have a schema graph S available, which is a generic representation of instance graphs in 7
and characterizes their typical structure. The format of the schema graph S is similar to
instance graphs, while the only difference is that nodes in S are not instantiated but are
only specified by event or entity types.

Given the training instance graphs Z and the schema graph S, we aim to learn a model
that is able to predict missing events for a new and incomplete instance graph. Specifically,
for a new instance graph I and a candidate event node e € S, our model aims to predict
the probability that e is a missing event for .

3. Our Approach
3.1 Subgraph Matching

Since our goal is to predict whether a candidate event node e from the schema graph S
is a missing node for an instance graph I, the first step is therefore to perform subgraph
matching between .S and I. In this way, I can be mapped to a subgraph of .S, which enables
us to compute the correlation between the instance graph I and the candidate event node
e within the scope of schema graph S.

Subgraph matching is usually defined as a 0-1 integer programming problem [Cho et al.,
2014], which is NP-complete (See Appendix A for details). To improve the time efficiency,
we propose a two-stage heuristic subgraph matching scheme between instance and schema
graphs. For an event node e; € I to be matched, we first identify the event node(s) in S
whose type is the same as e;:

E;={e;j € S| 7(ej)=7(es)}, (1)
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If |E;| = 0, e; will not be matched to any event node in S; If |E;| = 1, we end up with
a unique node in S, which is taken as the matching node for e;; Otherwise (|E;| > 1),
there are multiple event node in S that can be matched to e;, since there may be multiple
events in S that have the same event type. In this case, we design an additional stage for
event matching, which is based on the similarity of neighboring node types. Specifically, for
each event e; € E;, we identify the set of types of e;’s one-hop previous events P, one-hop
following events F, and argument roles A, in schema graph S:

Ps(ej)={7(ex) | (ex,ej) € S}, Fslej)={r(ex) | (ej,ex) € S}, As(ej)={a| (e, a,vx) € S}.

We can also identify the above three sets for e; in instance graph I, i.e., Pr(e;), Fr(e;),
and Aj(e;). Then we calculate the Jaccard index? J of the three corresponding set pairs,
and select the node with the highest total Jaccard index as the matching result:

" = argmaxc,cp; J(Ps(e;), Pres)) + J(Fs(ej), Fr(e:)) + J(As(ej), Ar(ei)).  (2)

In most cases, this two-step matching scheme will return a unique matching node e* € S
for the input node e; € I. But if there are still more than one nodes in S that have the
highest total Jaccard similarity with e;, we will randomly select one as the matching result.
The complexity analysis on the two-step matching scheme is presented in Appendix B.

3.2 Neighbors

After subgraph matching between the instance graph I and the schema graph S, [ is
mapped to I’ which is a subset of event nodes in S. Our goal is therefore to learn a
predicting function f(e, I'), which outputs the probability of whether a new event e € S\ I’
is a missing node for I’ C S. In this subsection, we measure the correlation between I’ and
e in terms of their neighbors.

To learn the representation of nodes as well as subgraphs in the schema, we choose
GNNSs, which utilize graph structure and node features to learn a representation vector for
each node, as our base model. Typical GNNs follow a neighborhood aggregation strategy,
which iteratively updates the representation of a node by aggregating representations of
its neighbors. For example, in Graph Convolutional Networks (GCN) [Kipf and Welling,
2017], the k-th layer is

h! = a( h! 4 b’“), (3)

i 1
W ZjeN(i)U{i} IN (@) - NI

where h¥ is the representation vector of node i € S at the k-th layer (h? is initialized as
the one-hot vector of i’s node type), N (i) is the set of nodes directly connected to i, W*
and b* are a learnable matrix and bias, respectively, and ¢ is an activation function. We
use GCN as the implementation of GNN, while the performance of other GNN models is
reported in Appendix E.

Suppose the number of GNN layers is K. The final embeddings of event e and events

in the subgraph I’ are therefore hX and {hg }6, e respectively. Then, a readout function

2. The Jaccard index between two sets is J(A, B) = I‘:Gg}. If A and B are both empty, J(A, B) = 1.
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is used to aggregate event embeddings in I’ and output the embedding of I’:
hf = READOUT ({nf}, _, ). (4)

The READOUT function can be summation, average, or a more sophisticated attention-
based aggregation, since the importance of events in a subgraph may be different w.r.t.
the given event e: h§ = Yeer BihE | where 8; = hg—rhf/ Deer hg—rhf is the attention
weight. We report the performance of different READOUT functions in Appendix E.

Finally, the embeddings of e and I’ are concatenated, followed by a Multi-Layer Per-
ceptron (MLP) to predict the probability that e is missing for I":

Pneighbor (67 I/) = MLPneigth’/‘ ([hga hﬁ]) : (5)

3.3 Paths

Note that when using GNN to process node neighbors for the mapped subgraph I’ and
the candidate event node e, we use node types as the initial node feature, which leads
to a potential issue that our model is not able to identify the distance between I’ and e.
To make our model capture the distance information, we model the connectivity pattern
between a subgraph and a node, which is characterized by paths connecting them in the
schema graph. Specifically, a path connecting two nodes s and ¢ is a sequence of nodes and

edges: s ﬂ i M 7k ﬂ> t, where (i, j) is the edge connecting node i and j, and each

node in the path is unique®. In this work, we use the types of edges in a path to represent
the path, i.e., (T((s,i>),7((7j,j>), e ,T(<k,t>)). We use Pf_%t to denote the set of all paths
connecting s and ¢ with length of no more than L, where L is a given hyperparameter.
For example, as shown in Figure 1, there are two paths with length of one or two that
connect TRANSPORT and DETONATE in the schema graph, i.e.,
{(TEMP), (DESTINATION, PLACE) }.

For a given event e and a subgraph I’ in the schema graph, we collect all paths connecting
e and every event node in I’ as the path set for (e, I’):

<L _ <L
e—I" ™ Ueiel’ P€—>€i’ (6)

<2
7)TRANSPORT—>DET0NATE -

which is then transformed into a multi-hot bag-of-paths vector p?_% ;» Where each entry

indicates that if a particular path exists in PE_L)I,. We use another MLP to take peS_L) p as

input and output the probability that e is missing for I':
Ppath(e,]’) = MLP pasn, (pgjp) . (7)

Finally, our predicting function f(e,I’) is implemented by combining the output of the
neighbor module in Eq. (5) and the path module in Eq. (7):

f(ev I/) = (pneighbor(e, II) + ppath(e, II)) / 2. (8)

3. The nodes in a path are required to be unique because a loop does not provide any additional information
and thus should be cut off from the path.
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3.4 Training

A potential issue of training the proposed model is the lack of ground-truth for predicting
missing events for a given instance graph. Therefore, we propose a self-supervised loss as
the training target. Specifically, we first map each instance graph I in the training data to
the schema graph S and get the matched subgraph I’. Then for each event node e € I’,
we mask e out from I’ and try to predict e using the rest of I’. In other words, we treat
(e, I'\e) as a positive training sample for each e € I’. Meanwhile, we can randomly sample
an event node outside I’; i.e., e € S\I’, and treat (e, I’) as a negative sample. The total
loss function is therefore as follows:

b= |;| ZIEI |;| < Zeel’ C(f(e’ ), 1) + Zees\l’ C(f(e, D, 0)> ’ &

where 7 is the set of training instance graphs, I’ is a subgraph of S that I is mapped to, and
C is cross-entropy loss. In Eq. (9), the first and the second term are the loss functions for
positive and negative samples, respectively. Note that the training data constructed by Eq.
(9) may be unbalanced. In this case, we can use downsampling to re-balance the dataset.
During the inference stage, the goal is to complete an input instance event graph, i.e.,
predict all its missing nodes. We discuss the details of the inference algorithm in Appendix

C.

4. Experiments
4.1 Datasets

We conduct experiments on four event instance graph datasets: Car-Bombings, IED-
Bombings, Suicide-IED, and Pandemic. The first three datasets are constructed by Li et al.
[2021a], which consist of complex events related to IED bombing. The last dataset Pan-
demic is constructed by us. Specifically, we use RESIN [Wen et al., 2021, Du et al., 2022}, a
cross-document information extraction and event tracking system, to process news articles
mentioned in the references of Wikipedia articles related to pandemic, e.g., 2002-2004 SARS
outbreak and COVID-19, then construct an instance event graph for each disease outbreak.

In addition, we use three complex event schemas for these four datasets. The first
schema Car-IED describes the scenario of bombings caused by car IEDs that are detonated
in an automobile or other vehicles. The second schema General-IED describes the scenario
of general IED bombing. The last schema is Disease-Outbreak, which describes the spread
of diseases in a given population as well as the response of the authority, the public, etc.
The first two schemas are developed by Li et al. [2021a], while the last schema is manually
curated by us. The statistics of datasets and schemas is presented in Table 1.

4.2 Baseline Methods

We compare our method with the following baseline methods: (1) AddAll, which treats all
events that exist in the schema but not exist in an instance graph as missing events. In
other words, it treats all test samples as positive. (2) AddNeighbor, which treats all events
in the schema graph that are adjacent to the mapped subgraph of an instance graph as
missing events. In other words, it treats a test sample (e, I’) as positive if and only if e
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Dataset Car-Bombings IED-Bombings Suicide-IED Pandemic
# train/val/test instance graphs 75/9/ 10 88 /11 /12 176 / 22 / 22 40/5/6
# train/val/test samples 2,368 / 288 / 320 | 2,904 / 363 / 396 | 5,808 / 726 / 726 | 3,200 / 400 / 480
Corresponding schema name Car-IED General-IED Disease-Outbreak
# event/entity nodes 32 /134 33 / 140 102 / 17
# ev-ev/ev-en/en-en links 41 / 138 / 261 42 / 143 / 530 200 /75 /1

Table 1: Statistics of the four datasets and three event schemas.

is the neighbor of at least one event in I'. (3) ID-MLP, which concatenates the one-hot
ID vector of e and the multi-hot ID vector of I’ for the pair (e, I’) as input, followed by
an MLP to predict the probability that e is a missing event for I'. (4) Type-MLP, which
is similar to ID-MLP, but the input is the concatenated vector of the one-hot event type
vector of e and the multi-hot event type vector of I’ for the pair (e, I’). (5) TransE [Bordes
et al., 2013] is a classic knowledge graph completion method, which assumes that h+r ~ t
for each triplet (h,r,t) in the knowledge graph, where h and t are the head and tail entities,
respectively, and r is the relation. (6) RotatE [Sun et al., 2018] is another state-of-the-art
knowledge graph completion method similar to TransE, but it models entity and relation
embeddings in the complex number space.

The implementation details of baselines are presented in Appendix D. In addition, we
also conduct extensive ablation study and propose two reduced versions of our model,
SEGC-neighbor and SEGC-path, which only use neighbor information and path information,
respectively, to test the performance of the two components separately.

4.3 Experimental Setup

We evaluate our method on two tasks: binary classification and graph completion. For
binary classification task, given an instance graph I in the test set, we first map I to
schema graph S and get the mapped subgraph I’ C S. Then for each event e € I, we treat
(e,I'\e) as a positive test sample, and for each event e € S\I', we treat (e, I') as a negative
test sample. We use Accuracy and AUC (Area Under the Curve) as the evaluation metrics.
For graph completion task, given an instance graph I in the test set, we first randomly
hide 10% event nodes from I and treat the masked nodes as the ground-truth set, then run
Algorithm 1 (the threshold in line 6 is set to 0.5) to complete the graph. Specifically, we
predict the set of missing events using the remaining 90% of event nodes in the graph, then
compare the predicted set and the ground-truth set by calculating their Jaccard Index and
F'1 score.

We report the performance of our model on the test set when AUC on the validation set
is maximized. Each experiment is repeated five times, and we report the mean and stan-
dard deviation of the results. The implementation details and hyperparameter settings are
presented in Appendix D, and the sensitivity of our model to hyperparameters is presented
in Appendix E.

4.4 Results

The result of binary classification task and graph completion task are presented in Table 2
and 3, respectively. Our method achieves the best performance on all datasets. Specifically,
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Dataset Car-Bombings IED-Bombings Suicide-IED Pandemic

Metrics Accuracy AUC Accuracy AUC Accuracy AUC Accuracy AUC

AddAll 55.3 50.0 35.3 50.0 40.4 50.0 19.0 50.0

AddNeighbor 59.4 56.9 58.6 64.1 60.9 64.5 64.8 56.8
ID-MLP 784 £32 889 +1.8|721+£08 8.7£05|79.2+0.7 88.3+06|91.2+0.6 96.3 + 0.6
Type-MLP |80.2 +1.2 89.8 +0.8|724+2.1 85.8+0.9[79.9+0.7 8.0+ 0.4|91.4+0.7 964 £+ 04
TransE 795 £2.0 89.04+19|73.3+38 845+£31|784+14 87.6+09|90.5+1.2 952+ 1.0
RotatE 743 +£4.0 86.0+ 45708+ 26 8.5+ 0.6|73.4+13 85.1+11(8.2+15 940+ 1.1
SEGC 82.8 £ 1.7 92.3 £ 0.3|81.5 + 1.2 88.9 + 0.2(82.4 £+ 0.3 90.0 £+ 0.5|92.8 £ 0.5 97.6 £ 0.1
SEGC-neighbor|83.6 + 1.4 92.1 + 0.4 |80.0 & 2.1 88.8 £ 0.6 |81.8 + 0.6 89.8 + 0.3|91.0 £ 0.3 95.6 +£ 0.5
SEGC-path |80.9 4+ 0.8 89.3+0.7|79.5 +0.9 86.1 +0.4|81.8+ 1.1 88.3+0.8/91.9+ 0.6 96.6 £ 0.2

Table 2: Mean and standard deviation (in %) of all methods on binary classification task.

Dataset Car-Bombings IED-Bombings Suicide-IED Pandemic

Metrics Jaccard F1 Jaccard F1 Jaccard F1 Jaccard F1

AddAll 17.3 27.8 8.3 15.0 9.9 17.3 3.2 6.1
AddNeighbor |16.5 + 0.9 255+ 19109+ 1.0 187+ 161|124+ 06 21.0+1.1| 474+ 1.1 87420
ID-MLP 332+ 19 466 +£2.2|17.8 £3.3 282+ 3.6 |28.2+24 39.1 +£28|29.2 4+ 5.0 38.0=%5.0
Type-MLP 387+ 18 522 +£22|187+6.0 289+75|33.6+59 428+ 53[30.3 7.0 41.2+64
TransE 349 + 2.2 46.7 +£2.9|19.6 £ 5.6 28.6 6.3 |30.2 £+ 6.8 40.1 + 6.4 |27.3 &+ 6.6 33.7 = 8.2
RotatE 29.1 £ 6.5 41.8 £6.6|14.6 +£ 3.7 23.5 £+ 3.3 20.8 2.4 30.1 +3.1|26.6 £5.8 31.9 £ 6.2
SEGC 45.8 + 5.0 59.2 + 5.4/34.8 + 3.1 48.3 + 3.2(44.9 + 3.8 54.3 + 5.0 |33.1 + 4.3 45.5 + 7.3
SEGC-neighbor| 42.0 + 5.2 56.4 + 5.4 |32.8 & 9.1 43.4 + 10.3|44.4 + 7.4 55.5 +6.1|25.6 = 0.9 38.9 + 0.7
SEGC-path |41.6 7.2 53.8 £6.7|28.8 5.5 424+ 7.1|37.8 5.6 498 £5.5(31.1 £7.5 43.0+£ 7.8

Table 3: Mean and standard deviation (in %) of all methods on graph completion task.

the AUC of our method SEGC in binary classification task surpasses the best baseline by
2.5%, 2.4%, 1.0%, and 1.2%, respectively, on the four datasets, and the F1 of SEGC in graph
completion task surpasses the best baseline by 7.0%, 19.4%, 11.5%, and 4.3%, respectively,
on the four datasets (all the numbers are absolute gains). We notice that the advantages
of our method are much more significant in graph completion task, which demonstrate the
superiority of our method in the real graph completion scenario. We also observe that in
most cases, the two reduced versions of SEGC-neighbor and SEGC-path already perform
quite well and beat all the baseline methods. Combining them together usually leads to
even better performance.

We also examine the impact of schema quality on our model performance, which is
discussed in Appendix F.

4.5 Case Study

We conduct a case study on the predicted result of a test instance graph in Pandemic dataset,
which describes the disease outbreak in a Chipotle restaurant. Figure 3 demonstrates the
key part of the Disease-Outbreak schema. The detailed description of the instantiated
events and the predicted missing events are shown in Table 4. Our model can not only
predict missing events but also provide the evidence for the prediction by analyzing the
attention scores in the neighbor module and the path weights in the path module. For
example, our model predicts that the No. 3 EAT event is missing from the instance graph,
since it is close to two instantiated events: EXCHANGE GoOoODs and ILLNESS (evidence of
neighbors), and it can be linked to the mapped subgraph through some high-weight paths
such as (TEMP_REV) and (MEAL, SOLD ITEM) (evidence of paths). Both the evidence of
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Figure 3: Case study on Disease-Outbreak schema. Dark red/blue nodes denote instantiated
events/ entities, and striped nodes are missing events predicted by our model.

L X ) Evidence .
ID| Event type Description Event arguments of neighbors Evidence of paths
’ .. |The three chicken tacos are L . (TEMP), (object, sold item),
1 | Contamination contaminated in the restaurant Thing: Three chicken tacos 2 (object, meal, TEMP_REV)
Filip Syzller purchased three Buyer: Filip Syzller
2 E’E;::gsge chicken tacos at the Powell Sold Item: Three chicken tacos - -
Chipotle restaurant Location: Powell Chipotle
Filip Syzller ate the chicken Consumer: Filip Syzller (TEMP-REV), (meal, sold lt?m)’
3 Eat . : 2,4 (TEMP, TEMP), (consumer, victim),
tacos that are contaminated Meal: Three chicken tacos .
(consumer, patient, TEMP)
Filip Syzller became ill with Patient: Filip Syzller
4 Illness nausea, headaches, and severe |Disease: Nausea/Headaches - -
abdominal pain in Ohio Location: Ohio
Filip Syzller was cured via . I
5 Treatment medical treatment Patient: Filip Syzller - -
Business Powell Chiptole was closed due . .
6 Close to the disease outbreak Agent: Powell Chipotle 7 (TEMP_REV), (agent, agent)
7 Business Powell Chipotle reopened its Agent: Powell Chipotle B R
Reopen restaurant
. Chipotle Mexican Grill, Inc. Locat{on: POWF” Chipotle
8 Investigate |. . A Examiner: Chipotle - -
investigated Powell Chipotle N N
Mexican Grill
The Delaware General Health
Department cited Powell Announcer: Health Department
9 |[Announcement|Chipotle for not maintaining |Hearer: Powell Chipotle - -
the proper temperature for Location: Powell
some food items

Table 4: Case study on a disease outbreak event in a Chipotle restaurant. The bold events
indicate that they are instantiated in the schema graph, the italic events indicate that they
are the missing events predicted by our model, while the last two events cannot be matched
to the schema. Evidence of neighbors and evidence of paths denote the neighbors and paths
that are important for our model to make the prediction, respectively.

neighbors and the evidence of paths can be used to provide explainability for the predicted

results.

5. Related Work

In this section, we discuss two lines of related work: event schema induction and knowledge
graph completion.

Event schema induction aims to automatically learn and induce event schemas from

event instances.

The first class of event schema induction methods are sequence-based,

which takes event-event relations into account, and orders event structures into sequences
[Granroth-Wilding and Clark, 2016, Weber et al., 2018, 2020, Lyu et al., 2020, Yang et al.,
2021, Zhang et al., 2021, Zhou et al., 2022]. Since they fail to capture the multi-dimensional
evolution of real-world complex events, i.e., an event can be preceded or followed by multiple

10
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events, researchers propose graph-based schema induction methods, which use graphs to
formulate event schemas [Wanzare et al., 2016, Li et al., 2020, 2021a, Jin et al., 2022]. For
example, Li et al. [2021a] train an auto-regressive graph generation model on instance event
graphs and then generate the event schema by aggregating and generalizing all events. Our
work differs from these methods in that their goal is to learn event schemas, while we focus
on the downstream application of event schema, i.e., event graph completion. Nonetheless,
these methods can be used to generate event schemas for our schema-guided prediction
model.

Event graph is a type of heterogeneous graphs, which is conceptually related to tra-
ditional entity-centric knowledge graphs. Many knowledge graph completion methods are
embedding-based [Bordes et al., 2013, Yang et al., 2015, Kazemi and Poole, 2018, Zhang
et al., 2019], which learn an embedding vector for each entity and relation by minimizing
a predefined loss function on all triplets. Such methods have the advantage by considering
the structural context of a given entity in the KG, but they fail to capture multiple relations
(paths) between entities. In contrast, the second class of methods is rule-based [Galdrraga
et al., 2015, Sadeghian et al., 2019, Yang et al., 2017], which aims to learn general logical
rules from knowledge graphs by modeling paths between the head and tail entities. However,
a significant drawback of these methods is that meaningful rules are usually very sparse,
which limits their capability of predicting missing relations that are not covered by known
rules. Similar to Wang et al. [2021], our method can be seen as combining the methodology
of the two classes of methods, but our method is specifically designed for event graphs.

6. Conclusion and Future Work

We propose a new schema-guided method for event graph completion, which overcomes the
drawbacks of existing graph completion methods and enables the model to predict missing
events in instance event graphs. We consider neighbors and paths when modeling the event
schema graph to fully capture its high-order topological and semantic information. Exper-
imental results on four datasets and three schemas demonstrate that our method achieves
state-of-the-art performance on event graph completion task. Moreover, it is resistant to
noise in the schema and exhibits high explainability for the prediction results.

Note that in this work, we focus on predicting missing nodes for event graphs. Since
the links in event graphs could also be noisy, a future direction is therefore to refine links
in event graphs based on event schemas. In addition, in some event schemas, events are
organized in a hierarchical manner, and contain logical relations and goal predictions. We
plan to utilize such rich knowledge to further improve the model performance.
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Appendix
A Limitation of Integer Programming Based Graph Matching Algorithm

For an instance event graph I and schema graph S, we can use a binary assignment matrix
X € {o, 1}\I|><\S\ to represent the matching solution, in which X;; = 1 if and only if node
i € I matches node j € S. We also use sy(i,7) to denote the pairwise node similarity
fori € I and j € S, and si((i,7), (k,1)) to denote the pairwise link similarity function for
(1,7) € I x I and (k,l) € S x S. Then the subgraph matching problem can be formulated
as finding the assignment matrix that maximizes the total matching score:

m}z{xx Z SN(Z,]) + Z 8L(<i7j>7 <k7l>)
Xij:1 X;p=1
lezl

X € {0, 1}11IS]
s.t.

ZL’&X@‘SI, fori=1,---,|I|,

(10)

where the constraints define a many-to-one node mapping: a node in I can be mapped to
at most one node in S, while a node in S can be mapped to multiple nodes in I. This
is because an instance graph may have repeated event types (e.g., two INJURE events in
Figure 1), which should be mapped to the same event node in the schema.

It is worth noting that Eq. (10) defines a 0-1 integer programming problem [Cho et al.,
2014], which is NP-complete. To improve time efficiency of subgraph matching, we notice
the following two facts: (1) The instance graph and the schema graph are both event-node-
centric. Therefore, we can focus on matching event nodes in the two graphs, which will
greatly reduce the entire searching space. Once event nodes are matched, entity nodes can
be naturally matched based on their event argument roles. (2) Event types play a decisive
role when determining whether two event nodes are matched. For example, in Figure 1, the
DIE:0 node in the instance graph should be matched to DIE in the schema graph rather than
INJURE since they have the same event type, even if the arguments of DIE:0 are different
from DIE but are exactly the same as INJURE.

Based on the above two facts, we propose the two-stage heuristic graph matching al-
gorithm, which greatly reduces the time overhead of integer programming based graph
matching algorithm. Note that in this two-stage matching scheme, the first stage (Eq. (1))
and the second stage (Eq. (2)) exactly correspond to the two terms in the objective function
in Eq. (10), i.e., node similarity and link similarity.

B Computational Complexity

Here we analyze the time complexity of our proposed subgraph matching algorithm. We
use Ny and Ng to denote the number of event nodes in I and S, respectively, and d to
denote their average node degree. For a given event e; € I, the complexity of calculating
E; in Eq. (1) is O(Ng), and the complexity of calculating Pr(e;), Fr(e;), and Aj(e;) is d.
In the worst case where |E;| = Ng, we need to calculate Pr(e;), Fr(ej), Ar(e;), as well as
the Jaccard index for every node e; € S, whose complexity is O(Ng(d + d)) = O(Ngd).
Therefore, the total complexity is O(N;(Ng + d)Ngd) = O(N;N2d), which is polynomial
w.r.t. the size of I and S.
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Algorithm 1: Inference procedure

Input: An incomplete instance graph I, the schema graph S, the trained model
fle,I') = S x 25+ [0,1]
Output: The completed graph I
111 ;
2 Map I to I’ C S using the two-stage subgraph matching algorithm presented in Section 3.1;
3 Candidate event node set C < S\I’;
4 while C is not empty do

5 d argmaXecC: dist(e,I’)=1 f(ea I/);
6 if f(¢/,I') > Threshold then
7 I' « I'u{d}, C«+ C\c;

Add a new event node ¢ to I whose type is the same as ¢’;
for n' in ¢’ ’s neighbor events and neighbor entities in S do

10 if n’ has a matching node n in I then
11 Add a temporal or argument link between ¢ and n in I according to the link
between ¢’ and n’ in S;

12 else

13 L break

14 return [

C Inference

The goal of inference is to complete an input instance event graph, i.e., predict all the
missing nodes. This is similar to set expansion [Shen et al., 2017, Huang et al., 2020],
which aims to expand a small set of seed elements into a complete set of elements that
belong to the same semantic class. But note that there exists an intrinsic graph structure
among elements in our problem. Therefore, we propose an inference algorithm specifically
for schema-guided event graph completion.

The inference procedure is presented in Algorithm 1, which takes as input an incomplete
instance graph I, the schema gaph S, and the trained model f(e,I’), then output the
completed graph I. The first step is to use the subgraph matching algorithm introduced in
Section 3.1 to map I to a subgraph I’ C S (line 2), and the candidate event node set C' is
initialized as the set of nodes outside subgraph I’ (line 3). Then we select a node from the
candidate set C as the predicted missing event repeatedly (lines 4-13). At each iteration,
we first identify the subset of the candidate set where nodes are neighbors of I’ (i.e., e € C
and dist(e, I') = 1), then select a node ¢’ from this subset whose probability f(c/,I’) is the
highest, as the candidate event node at this iteration (line 5). The reason of restricting ¢’
to be the neighbor of I’ is that, ¢’ can thus be linked directly to I’ through temporal links,
so that the instance graph after completion will still be connected. Based on the value of
f(d,I'), we have the following two cases:

o If f(c/,I') is greater than a given threshold (line 6), such as 0.5, ¢’ is taken as the
predicted missing event at this iteration. We then update I’ and C' by adding ¢ to
I’ and removing ¢ from C, respectively (line 7), and update I by adding the missing
event and its associated links to T (lines 8-11). Specifically, we add a new event node

16



SCHEMA-GUIDED EVENT GRAPH COMPLETION

¢ to I whose type is the same as ¢/ (line 8), then for each event and entity node n’ € S
that is connected to ¢, if n’ has a matching node n € I, we add a temporal link or
argument link between ¢ and n according to the link between ¢ and n’ in S (lines
9-11). In other words, we “copy” the links associated to the predicted event from the
schema to the instance graph.

e Otherwise (line 12), the scores of all nodes in the candidate set do not exceed the
threshold (note that f(c¢/,I’) is the largest among C). We can then terminate the
inference procedure (line 13).

The inference loop is repeated until the candidate set C is empty or the probability
f(¢/,T') in the current loop is no larger than the threshold. Finally, I is returned as the
completed event graph for I.

It is worth noting that missing events are predicted according to the ascending order
of their distance to the subgraph I’, which ensures that the original instance graph I is
expanded over the schema in a natural, from-the-inside-out manner. In addition, note that
the predicted missing event at one iteration is immediately added into I’, which is then used
to compute the probability f for the next iteration. Such a bootstrapping strategy allows
the model to track the up-to-date instance graph and predict missing event nodes as many
as possible.

D Implementation Details

Baseline Methods. For ID-MLP and Type-MLP, we use an MLP with one hidden layer
of 100 units as the prediction model. For TransE and RotatE, we first use them to learn the
embedding of each node in the schema graph, then average the embeddings of nodes in a sub-
graph as the subgraph embedding. For an input pair (e, I’), their embeddings are concate-
nated, followed by an MLP with one hidden layer of 100 units to predict the missing proba-
bility. The code of TransE and RotatE is from https://github.com/DeepGraphLearning/
KnowledgeGraphEmbedding. We set the dimension of entity embedding to 256 and keep
other hyperparameters as default.

Our Method. Our method is implemented in PyTorch [Paszke et al., 2019]. We use
GCN [Kipf and Welling, 2017] as the implementation of GNN in the neighbor module. The
number of GNN layers K is 3, and the dimension of hidden layers is 256. We use sum as the
READOUT function. The maximum path length L is 4 in the path module. MLP,,¢;gnp0r
and MLP,q, are both MLPs with one hidden layer of dimension 256. We train the model
for 20 epochs with a batch size of 128, using Adam [Kingma and Ba, 2015] optimizer with a
learning rate of 0.005. The above hyperparameters are determined by maximizing the AUC
on the validation set of Car-Bombings, and kept unchanged for all dataset. The result of
hyperparameter sensitivity is provided in Appendix E. The search space of hyperparameters
are as follows:

e GNN type: {GCN, GAT, SAGE};
e The number of GNN layers: {1,2,3,4,5};
e The dimension of GNN hidden layers: {32, 64,128,256, 512};
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Figure 4: Hyperparameter sensitivity of SEGC-Neighbor w.r.t. GNN type, READOUT
function, and the number of GNN layers K.

e READOUT function: {sum, average, attention};

e The maximum path length: {1,2,3,4,5};

The dimension of hidden layer in MLP,cightor and MLP,qp: {32, 64,128,256, 512};

Batch size: {32,64,128,256,512};

Learning rate: {0.0005,0.001,0.005,0.01,0.05,0.1}.

E Hyperparameter Sensitivity

We study the sensitivity of our model to several key hyperparameters to provide better
understanding on the proposed model and investigate its robustness.

For the neighbor module of SEGC, we study the impact of GNN type, READOUT
function, and the number of GNN layers K on the model performance. As shown in Figure
4a, we use three GNNs in the neighbor module: GCN [Kipf and Welling, 2017], GAT
[Velickovié et al., 2018], and SAGE [Hamilton et al., 2017]. The number of GNN layers is
3, and the dimension of hidden layers is 256 (for GAT, the number of attention heads is
16 and the dimension of each attention head is 16). The result shows that GAT achieves
the best performance in the three IED-related scenarios while SAGE performs the best
in the pandemic scenario. Figure 4b demonstrates that attention is a good choice for the
READOUT function, but it does not perform universally the best on all datasets. Figure
4c shows that our model usually achieves the best performance when the number of GNN
layers is 2 ~ 4. Moreover, Pandemic dataset is much more sensitive to the number of GNN
layers.

For the path module of SchemaEGC, we study the impact of the maximum path length
and the path type. From Figure 5a it is clear that our model is extremely sensitive to the
maximum path length L, since the AUC increases by 0.2 ~ 0.4 as L goes from 1 to 5. But
the marginal improvement is diminishing when L > 3 due to the issue of overfitting. Figure
5b demonstrates that considering all the three types of links for the path module works
better than only considering event-event temporal links.
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Figure 5: Hyperparameter sensitivity of SEGC-Path w.r.t. (a) the maximum path length
L and (b) path type. (c¢) Impact of schema quality on Car-Bombings dataset.

F Impact of Schema Quality

Since our proposed method is based on event schemas, we study how the quality of schemas
will impact the model performance. We randomly perturb the original Car-IED schema for
Car-Bombings dataset, and present the model performance in Figure 5c. The performance
of the path module (SEGC-path) is basically unchanged when the percentage of changed
edges is small (< 20%), but drops significantly when more edges in the schema are changed
(> 30%). In contrast, the neighbor module (SEGC-neighbor) is more resistant to the noise
in schema graph. As a result, the whole SEGC model is able to basically maintain its
performance even when half of the edges in the schema graph are changed.
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