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Abstract

Self-supervision with synthetic training data built from knowledge graphs has been proven
useful to enhance the language model accuracy in zero-shot evaluation on commonsense reasoning
tasks. Yet, since these improvements are reported in aggregate, little is known about how to select the
appropriate knowledge for generalizable performance across tasks, how to combine this knowledge
with neural language models, and how these pairings affect granular task performance. In this paper,
we study the sensitivity of language models to knowledge sampling strategies, modeling architecture
choices, and task properties. We evaluate the accuracy overall and in relation to four task properties:
domain and vocabulary overlap between the train and the test data, answer similarity, and answer
length. Our experiments show that: (i) encoder-decoder models benefit from more data to learn
from, (ii) sampling strategies that balance across different aspects or focus on knowledge dimensions
yield best accuracy, (iii) synthetic data is most effective for tasks with low domain overlap, and
questions with short answers and dissimilar answer candidates, and (iv) our best TS5 model reaches
state-of-the-art results on zero-shot commonsense reasoning, narrowing the gap with supervised
models, which is a side effect of our overall study.

1. Introduction

Common sense is the human knowledge about the world and the methods for making inferences
from this knowledge [Davis, 2014]. Commonsense knowledge includes facts about events (including
actions) and their effects, about knowledge and how it is obtained, about beliefs and desires, and
facts about material objects and their properties [McCarthy, 1989]. Building open-world Al agents
equipped with common sense that possess a wide range of everyday knowledge about naive physics,
folk psychology, and causality is still an open challenge [Ma et al., 2019, Francis et al., 2022].

In recent years, large pre-trained language models (LMs) have been shown to perform well on
commonsense reasoning [Devlin et al., 2018, Liu et al., 2019b] tasks based on developing one fine-
tuned model for each benchmark. Recognizing that the assumption of benchmark-specific training
data is unrealistic for open-world commonsense reasoning, the community has proposed lightweight
alternatives to fine-tuning [Shin et al., 2020, Li and Liang, 2021] and has increasingly focused on
zero- and few-shot tasks and reasoning models [Shwartz et al., 2020, Ma et al., 2021a]. Zero-shot
reasoning methods rely on careful self-supervision of LMs with external resources: commonsense
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KGs [Banerjee and Baral, 2020, Ma et al., 2021a], elicitation of pre-existing knowledge in the
LM [Shwartz et al., 2020, Paranjape et al., 2021], or instruction-prompted training with a diverse set
of tasks [Sanh et al., 2021]. State-of-the-art zero-shot performance has been obtained by adapting
LMs with synthetic data from commonsense KGs [Ma et al., 2021a, Dou and Peng, 2022]. Yet, as
these improvements are reported in aggregate, little is known about (i) how to select the appropriate
knowledge for solid performance across tasks, (ii) how to combine this knowledge with neural
language models, and (iii) how these pairings affect granular task performance.

This paper conducts an empirical study of the adaptation (self-supervision) of state-of-the-art
LMs with KGs for zero-shot commonsense reasoning. Our contributions are: 1. A research de-
sign that captures key dependencies between the selected knowledge as synthetic data,' the LM,
and the properties of the task, through five questions that have not been answered so far in such
zero-shot evaluation setting. 2. Formal framework for self-supervision of LMs with synthetic data
from commonsense KGs, which answers the research questions by supporting a wide variety of
sampling strategies and sizes, language model variants, and meaningful task properties. 3. Rigorous
experimentation of seven sampling strategies with seven knowledge sizes, five language models
belonging to two representative model architectures, in relation to four properties of five common-
sense reasoning tasks. We observe that: (i) encoder-decoder models benefit from more data to learn
from, (ii) sampling strategies that balance across different aspects or focus on knowledge dimensions
yield best performance, (iii) synthetic data is most effective for tasks with low domain overlap, and
questions with short answers and dissimilar answer candidates, and (iv) our best TS5 model reaches
new state-of-the-art results on zero-shot commonsense reasoning, narrowing the gap with supervised
models, which is a side effect of our overall study.

2. Research Questions

Here, we motivate each question and indicate the novelty introduced by studying the question for
zero-shot commonsense reasoning with KGs.

RQ1: What is the overall impact of model and knowledge choices on the generalizability of self-
supervision of LMs with KGs? Prior work on zero-shot commonsense reasoning with KGs [Ma et al.,
2021a, Dou and Peng, 2022] has reported large gains over vanilla LMs across benchmarks. Yet, the
gap between these results and the performance of supervised models remains large. It is unclear how
much this gap can be bridged by other knowledge sampling strategies or LM architectural choices.

RQ?2: How much data is needed to adapt LMs to commonsense reasoning tasks? Finding a right
number of QA pairs to adapt a model with is crucial to reach optimal performance, prevent overfitting,
and optimize efficiency. Ma et al. [2021a] report accuracy gains with a hand-selected KG subset,
whereas Ilievski et al. [2021a] show that adapting language models with questions from certain
knowledge dimensions is much more beneficial than others, and may fare better than using the entire
set of questions. No prior work has performed systematic analysis of the relation between knowledge
sample size and the zero-shot commonsense reasoning performance.

RQ3: How to best sample data for model adaptation? It is unclear what is the effect of the sampling
strategy on the model performance. Sampling can focus on specific knowledge types or their
optimal combination [Ilievski et al., 2021a], training time uncertainty [Swayamdipta et al., 2020], or

1. Here, the synthetic data is formulated as multiple choice questions generated by leveraging the structure of common-
sense knowledge graphs.
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Figure 1: Overview of our study framework. The question generation step takes a KG as input,
and yields a synthetic QA set. The QA set depends on the sampling size and strategy. In
parallel, a LM is chosen out of a pool of models based on two factors: architecture and
size. The selected vanilla LM is adapted based on the synthetic QA set, resulting in a
commonsense LM. The accuracy score of the LM is evaluated on a task that is characterized
by a degree of domain overlap, answer similarity, answer length, and vocabulary overlap.

confidence [Pleiss et al., 2020]. While corresponding strategies exist in the literature, they have not
been applied to the task of zero-shot QA with KGs.

RQ4: Can models generalize well to tasks with low domain overlap? Knowledge-enhanced zero-shot
models have higher impact on tasks that resemble the synthetic data, which is confirmed by the
relatively larger gains obtained when using ConceptNet for CSQA and ATOMIC for SociallQA,
compared to using these sources on datasets like WinoGrande [Mitra et al., 2019, Ma et al., 2021a].
Whether models can generalize well to questions with low domain overlap is an open question.
RQ5: What is the connection between model’s accuracy and properties of the task? Prior work
has reported that models rely on spurious correlations, such as lexical properties, to answer ques-
tions [Gururangan et al., 2018, McCoy et al., 2019], and that fine-tuned models perform much
better on questions that resemble the training data [Ma et al., 2021b]. Only considering the answer
candidates may bring high performance on some tasks, indicating that the properties of the answer
candidates have a large impact on the model [Li et al., 2021]. While it is intuitive that questions and
answers with different properties (similarity, length, vocabulary, and overlap) may require different
reasoning, these investigations have not been conducted for zero-shot commonsense evaluation.

3. Method

We follow the task formulation of generalizable commonsense reasoning proposed by Ma et al.
[2021a]. The input consists of a natural language question @) and n candidate answers A;, | A;| = n.
Exactly one of the candidate answers, marked with A, is correct. The remaining (n — 1) candidate
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answers serve as distractors. As we assume a zero-shot setup, the models have no access to the
benchmark-specific training data. Each model is adapted once, after which they are fixed, and
directly applied on test partitions across benchmarks. We assume a knowledge-driven QA framework
(Figure 1), where pre-trained LMs are adapted with artificial QA sets derived from KG data. This
framework allows us to investigate the performance of LMs adapted with synthetic data from KGs as
a function of the 1) size and architecture of the language model; 2) size and sampling strategies of the
knowledge used for model adaptation; and 3) properties of the task, such as overlap with knowledge
and answer length. Given a natural language question (), and n candidate answers { A1, ..., A, }, the
LM has to select the most probable answer A during training. Once the LM adaptation is done, the
updated LM is applied across QA tasks in a zero-shot manner.

3.1 Language Models

Model architectures. We adopt two widely-used pre-trained models: RoBERTa [Liu et al., 2019a]
and TS5 [Raffel et al., 2019]. RoBERTa is an encoder-only masked language model (MLM), whereas
TS5 is an encoder-decoder model which converts tasks into text-to-text format. Following Ma et al.
[2021a], for ROBERTa each input sequence is a concatenation of the question and one of its answer
candidates. We mask one non-stop token in the sequence at a time, and compute the masked token’s
loss. We then take the averaged loss for the sequence and this is repeated for every answer candidates.
We then train the model with the margin loss: I = % > "~y max(0,n— S, + S;), where S, and
S; are the negative averaged loss for correct answer and (risytractor respectively. During inference,
we take the candidate with highest score .S as the answer. For T5, each input sequence is the same
as RoBERTa except that we prefix it with a task-specific term “reasoning:” following the original
paper [Raffel et al., 2019]. The model is pre-trained to generate "true" or "false" token. Lipqye
represents the loss of the "true" token logits, while L fq5. represents the "false" token logits. For
each answer candidate, we compute the score S = Lyye — Lfq5c and use the same margin loss
function as in RoBERTa to jointly predict the optimal candidate.?

Model sizes. We use RoBERTa’s base and large models with 125M and 355M parameters, re-
spectively. We experiment with three TS5 models: small (60M parameters), large (740M), and 3b
(2.85B).

3.2 Synthetic question generation

We sample knowledge from the CommonSense Knowledge Graph (CSKG) [llievski et al., 2021b],
which combines seven commonsense knowledge resources under a shared representation, including
ConceptNet [Speer et al., 2017], ATOMIC [Sap et al., 2019a], and Visual Genome [Krishna et al.,
2017]. In total, CSKG contains over 7 million commonsense statements, consisting of head (h),
relation (r), and tail (¢). CSKG describes over 2 million nodes with 58 relations. Each knowledge
statement in CSKG is categorized into one of 13 dimensions: lexical, similarity, distinctness,
taxonomic, part-whole, creation, utility, comparative, quality, temporal, spatial, motivational, and
relational-other [Ilievski et al., 2021a].

2. We also tried to score the answers individually, or to concatenate the question with all answer candidates, and teach
the model to predict the position or make a copy of the right candidate, following [Khashabi et al., 2020]. These loss
strategies performed consistently worse, and we leave them out of the paper.
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Sample sizes. We use all relations of the CSKG subset that combines ATOMIC, ConceptNet,
WordNet [Miller, 1995], Wikidata [Vrandeci¢ and Krotzsch, 2014], and Visual Genome. We sample
synthetic QA sets that correspond to K % from this knowledge set, K € {1, 5, 10,33, 50,100}. In
comparison, Ma et al. [2021a] use 100% of the data for 14 manually-selected semantic relations.
Sampling strategies. We experiment with seven strategies to sample the K % questions. (i) Random
draws K% of the question pool by chance, without replacement. (ii) Dimension selects the questions
that belong to a knowledge dimension. We evaluate the five most populous dimensions in CSKG:
temporal, desire/goal, taxonomic, quality, and relational-other. For fair comparison, we limit the
questions selected for a dimensions to the equivalent of K % of the entire question set. (iii) Uniform
selects an equal number of questions from each of the thirteen dimensions, leading to a total of
K% of the entire question set. (iv) Vanilla-confidence samples questions based on the confidence
of the vanilla LM, i.e., before any adaptation. We experiment with selecting the questions with
either lowest or highest confidence. (v) Confidence samples questions based on the mean LM
confidence for the true label across the adaptation epochs. We first train a model on the entire
QA set and record each question’s training statistics as in [Swayamdipta et al., 2020]. We design
two variants: confidence-low and confidence-high, analogous to the vanilla-confidence strategy.
(vi) Variability detects the K% of the questions with extreme standard deviation for the true label
across the adaptation epochs [Swayamdipta et al., 2020]. We experiment with variability-low and
variability-high sampling. (vii) Margin selects the K% with the most extreme mean difference
between the confidence of the correct answer and the incorrect ones [Pleiss et al., 2020]. We consider
margin-low and margin-high sampling. For every strategy, K = 100 corresponds to the entire
synthetic QA pool, while K = 0 is the vanilla pre-trained LM without adaptation.

3.3 Tasks

Task properties. We evaluate accuracy on five benchmarks for multiple-choice commonsense
question answering, described in the Appendix of this paper. We compute granular model accuracy
on task partitions based on four properties. (i) Domain overlap between the KG and the task. We
refer to the necessary commonsense knowledge for solving a particular set of tasks as a domain. Two
of the five benchmarks are known to have high domain overlap (HDO) with existing KGs [Mitra
etal., 2019, Ma et al., 2021a]: CSQA has been devised based on knowledge in ConceptNet, while
SociallQA has been created based on the ATOMIC KG [Sap et al., 2019a]. The remaining three
benchmarks have been created independently of the KGs, therefore, we consider them to have low
domain overlap (LDO) with our KGs. We compare LM accuracy on the benchmarks with HDO and
LDO. (ii) Answer similarity (AS) between the answer candidates. We partition the task into| quartile|s
Ta,NTa,
= [T, U074, |
Here, T4, and TAj are the set of tokens of candidates A; and A;, respectively. (iii) Answer length
(AL). We partition a task into quartiles based on the answer length, computed by summing the tokens
Ty, of the candidates A;: AL(q) = >_i— |Ta,|. (iv) Vocabulary overlap (VO) between the task
questions and the synthetic QA set. Given a task question, we compute the average frequency of the
candidate tokens in the synthetic data. To increase the effect of the tokens with low frequency, we
use the reciprocal value of the token frequencies: VO(q) = = 37", ﬁ Here, m is the number

based on the Jaccard similarity between the tokens of the candidates A; and A;: AS(q)

of tokens in the combination of the candidates (| |J;' T4, | for each question, tj, is the k-th token in
the answer candidates, and f(tx) is its frequency in the synthetic data. When splitting the task based
on answer similarity, answer length, and vocabulary overlap, we use ROBERTa’s tokenizer, and
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Table 1: Zero-shot results of our LMs with their optimal data size and sampling strategy, all the
results are the average accuracy from 3 runs. We compare to the best versions of relevant
baselines. ‘*’ indicates that the average is computed on an incomplete set of benchmarks.
Best results per column are shown in bold.

Model aNLI I‘;‘l])é) PIQA | SIQ AHDgs 0A Avg(LDO) Avg(HDO) Avg
Majority [Ma et al., 2021a] 50.8 50.4 50.5 33.6 20.9 50.6 2725 412
RoBERTa-large [Liu et al., 2019b] 655 575 67.6 473 45.0 63.5 46.1  56.6
COMET [Bosselut et al., 2019] - - - 50.1 - - *50.1  *50.1
Self-Talk [Shwartz et al., 2020] - 547 70.2 46.2 324 *62.5 39.3 509
SMLM [Banerjee and Baral, 2020] | 65.3 - - 48.5 38.8 *65.3 43.7  50.9
Ma et al. [Ma et al., 2021a] 70.5 60.9 72.4 63.2 67.4 67.9 653  66.8
Dou & Peng [Dou and Peng, 2022] - - - 59.9 67.4 - 63.6  63.6
RoBERTa-base (ours) 59.9 53.1 65.7 54.6 53.6 59.6 541 574
RoBERTa-large (ours) 71.5  60.0 72.6 63.6 66.4 68.0 65.0  66.8
T5-small (ours) 50.6 51.6 56.2 423 36.4 52.8 394 474
T5-large (ours) 66.1 58.7 70.8 57.5 63.1 65.2 60.3 632
T5-3b (ours) 76.6 71.0 76.7 65.3 69.9 74.7 67.6 719
RoBERTa-large (supervised) 85.6 79.3 79.2 76.6 78.5 81.4 775  79.8
T5-3b (supervised) 875 844 76.3 78.6 81.5 82.7 80.1  81.7

we focus on the PIQA benchmark [Bisk et al., 2020] which has a variety of properties among its
questions.

4. Results

Finding 1: Careful knowledge sampling and model design leads to state-of-the-art zero-shot
accuracy across tasks. Table 1 shows the results obtained with the best performing knowledge
sampling strategy (random) and the best data size per model architecture (5% for RoOBERTa models,
33% for TS5 models), all the results are the average accuracy from 3 runs. > We have observed that
the variance across runs is within 1% accuracy points. The standard deviation statistics for all models
is lower than 0.5 (see Table 5 in Appendix section). The relatively low variance means the results are
consistent when we are doing random samplings for training data for different times. The results
show that the best performance is clearly obtained with self-supervision of the model T5-3b with 33%
of the data. The zero-shot result of this model is 71.9 on average over the five benchmarks, which is
15.3 points higher than the vanilla RoBERTa-large model and 5.1 points higher than the previous
state-of-the-art result of Ma et al. [2021a]. This result is especially encouraging in comparison with
the supervised RoBERTa-large and T5-3b LM, which is now only 7.9 and 9.8 points higher than our
result, despite relying on benchmark-specific training data. Our second best model is RoBERTa-large,
which is able to outperform the RoOBERTa-large model in Ma et al. despite relying on only 5% of the
training data. As expected, LM size correlates with accuracy, as T5-3b > T5-large > T5-small and
RoBERTa-large > RoBERTa-base.

Finding 2: The optimal synthetic data size depends on the LM size and architecture. Figure 2
shows the average accuracy of the LMs adapted with different synthetic data sizes. The encoder-only
model, ROBERTRa, benefits less from the increase of the synthetic data size. RoOBERTa-large achieves

3. We did not post the average result of T5-3b due to the excessive time cost.
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its optimum of 66.8% accuracy with only 5% of the data, whereas the accuracy of ROBERTa-base
increases only marginally with more than 5% of the data.

The generative encoder-decoder LM, T35, benefits
from more commonsense data. Especially the accu-
racy of our largest model, T5-3b, grows around 7%
by increasing K from 5 to 33%. Yet, the performance
of the T5 models generally peaks around 33%, and
plateaus with the increase of the data size. We also
plot the learning curves of ROBERTa and TS5 models
in Appendix, and we found that RoOBERTa’s adapta-
tion loss to be consistently lower than T5. This is
probably because RoBERTa is adapted with the sim-
ilar objective as its pretraining (MLM), whereas T5
is adapted with a new prefix. This observation also
helps explain why RoBERTa is more data efficient and
achieves better results than T5 of similar size.
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Table 2: Evaluation results on the five benchmarks of T5-large with different sampling strategies.
All samples have equivalent sizes, corresponding to 5% of the training data. The best result
per column is marked in bold. We focus on 5% of the data for computational reasons.

Strategy aNLI I‘;‘I,)(g PIQA | SIQ AHDgS 0A Avg(LDO) Avg(HDO) Avg
Random 5% 65.9 56.5 70.5 55.4 61.9 64.3 58.7 62.0
temporal 66.6 564 71.2 54.9 63.4 64.7 59.2 625

desire 644 579 69.6 55.9 62.2 64.0 59.1 62.0

Dimension  taxonomic | 61.8 54.0 66.8 52.8 57.5 60.9 55.2 58.6
quality 66.8 584 70.0 56.4 59.6 65.1 58.0 62.2

rel-other 61.0 525 65.9 51.7 54.0 59.8 529 57.0

Uniform 653 575 69.2 56.6 62.7 64.0 59.7 623
Vanilla-conf high 65.3 56.8 69.0 55.5 57.5 63.7 56.5 60.8
low 64.0 56.0 68.1 52.0 59.6 62.7 55.8 599

Conf high 629 538 66.5 53.9 57.0 61.1 55.5 58.8
low 41.8 485 42.0 24.7 07.7 441 16.2 329

Varibility high 64.0 54.6 65.1 51.1 54.5 61.2 52.8 579
low 61.7 549 66.8 52.7 55.9 61.1 543 58.4

Margin high 63.8 545 67.2 52.8 56.9 61.8 549 59.0
low 415 450 43.7 24.1 09.1 43.4 16.6 32.7

Finding 3: Preserving the natural distribution of the data is the optimal sampling strategy.
We study the impact of different sampling strategies on RoOBERTa-large and T5-large, which have
the same order of magnitude (hundreds of millions of parameters). The results in Table 2 show
that random, uniform, and temporal sampling perform best.* The finding that random and uniform
sampling lead to a strong and balanced model is consistent with the finding that random sampling of
distractors is better than heuristic- and embedding-based strategies [Ma et al., 2021a], both emphasiz-

4. Similar result has been obtained for ROBERTa-large, see Appendix.



ZHANG, ILIEVSKI, MA, FRANCIS & OLTRAMARI

Table 3: Examples of benchmark questions that are correctly answered with only one model, which
is adapted with dimension-based knowledge. (*) denotes the correct answer.

dimension: temporal

Q:Jan went out with Quinn’s friends and had a great time.What does Jan need to do before this?
Al:get dressed(*); A2:cancel her plans; A3:see Quinn’s Friends again

dimension: desire

Q:Robert has no regret for punching Justin in the nose because _ was the victim of injustice.
Al:Robert(*); A2:Justin

dimension: quality

Q:What can machines do that humans cannot?

Al:fail to work; A2:perform work; A3:answering questions; A4:see work; AS5:fly(*)
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Figure 3: Accuracy of the best performing RoBERTa-large and T5-3b models in relation to the
answer similarity, answer length, and vocabulary overlap between the data used for
pretraining and testing.

ing the benefit of preserving the natural data distribution. Meanwhile, the strong performance of the
dimension-based strategies, whose data samples are disjoint by design, indicates that LMs adapted
on these dimensions capture complementary knowledge. As an illustration, Table 3 shows three
benchmark questions which are only answered correctly with the most suitable dimension-based LM.
Finding 4: The superior accuracy of T5 owes mainly to better generalization to low domain
overlap tasks. Table 1 shows that T5-3b’s improvement over RoOBERTa is on average 6.5% on the
LDO benchmarks, but only 1.4% on the HDO benchmarks. This generalization ability of T5-3b
can largely be attributed to the larger capacity of T5-3b, which allows it to represent additional
knowledge and associations between terms. In addition, this Table shows that the HDO benchmarks
have been much more popular in prior work, and much larger gains over the vanilla LM have been
reported on them (up to 15.1 points on SIQA and 22.4 points on CSQA). Conversely, results on
the LDO benchmark have rarely been reported in prior work on zero-shot commonsense reasoning,
and the maximum improvement obtained in prior work is only 4.4 points on average across these
benchmarks. Therefore, our accuracy improvement of 0.3 points for RoOBERTa and 6.8 points for
T5-3b is a notable leap towards robust performance on domains with low overlap.

Finding 5: Synthetic data is most effective for questions with short answers and dissimilar
answer candidates. Figure 3 (left) shows that all models that use a discriminative loss (vanilla
RoBERTa4, and the adapted RoBERTa and T5) perform equally well on the questions with similar
answers. The adaptation of TS5 brings a large improvement on similar questions, which can be
attributed to adapting its existing knowledge to the task at hand. For RoOBERTa, the impact of
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the synthetic data grows with the decrease of the answer similarity. On most dissimilar questions,
RoBERTa benefits from the synthetic data by improving its accuracy by nearly 10 points, and T5
excels over RoBERTa by leveraging its higher capacity to learn more effectively from the synthetic
data. Given that the data used for pre-training is designed to only include questions with non-
overlapping answers, this finding is intuitive, and explains the source of improvement of performance
reported in prior work [Ma et al., 2021a, Dou and Peng, 2022]. We observe an analogous outcome in
terms of the answer length. Both ROBERTa and TS5 perform best on questions with longer answers,
while T5-3b is advantageous for short answers (Figure 3, middle). Notably, the synthetic QA data
mostly consists of short answers, showing again that the performance gain of T5-3b owes to its
capacity to extend original knowledge during the commonsense adaptation stage. Finally, we expect
that questions with a higher vocabulary overlap will be easier for the models to learn with the
synthetic data. Figure 3 (right) shows no clear correlation between vocabulary overlap and model
accuracy. Further analysis should investigate whether this is an artifact of our method of computing
vocabulary overlap, or the models are indeed insensitive to the task vocabulary.

5. Discussion

Our experiments show that the choice of LM size and architecture, as well as knowledge size and
sampling strategy, affects the ability of models to answer commonsense questions across benchmarks.
Encoder-decoder models benefit from more data to learn from, whereas sampling strategies that
balance across different aspects yield best performance. Most of the accuracy gain with synthetic
data adaptation came on tasks with low domain overlap, signifying strong generalization, and on
questions with short answers and dissimilar answer candidates, owing to the synthetic data properties.
Next, we revisit three key assumptions of this study, and provide an alternative inspired by the results
of our experiments.

1. From a single model to mixture of models. Balanced sampling strategies (uniform and random)
show very robust performance on these task, as they preserve the natural distribution between the
different properties of the data. More specialized strategies, e.g., focusing on knowledge dimensions,
perform well on subsets of the task, but under-perform on other subsets. This model specializa-
tion questions the assumption that a single zero-shot model is sufficient to perform optimally on
different aspects of common sense, and suggests that model combinations, such as Mixture of mod-
els [Gururangan et al., 2021], might provide a more comprehensive and trustworthy commonsense
model. This would entail, e.g., combining models from different dimensions, or models that capture
complementary training dynamics.

2. From implicit to explainable zero-shot commonsense reasoning. In our current framework,
the rich and diverse commonsense knowledge is taught to an LM through a large set of QA pairs.
Given the simplicity of these questions, an implicit assumption of this study is that LMs can
reverse engineer these questions to learn commonsense knowledge implicitly, and apply this newly
acquired knowledge on unforeseen benchmarks, whose surface properties may be different, but their
underlying commonsense knowledge may be largely shared. While this is a reasonable assumption,
our commonsense models are black boxes, and they do not provide an explicit justification for their
decisions. A natural extension of this work is to devise explainable models, i.e., models whose output
includes the explicit reasoning steps associated with a predicted answer.

3. From textual-based question answering to more realistic tasks. A key aspect of our zero-
shot framework is its generalization across QA tasks and knowledge domains. The gap between
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zero-shot and fine-tuning performance is closing down, bringing a natural question: are zero-shot
models, with an adaptation of neural techniques with background knowledge, able to generalize
across knowledge domains and QA settings, or have they merely learned how to answer questions
statistically? To address this question, we propose a shift towards more realistic tasks across QA
settings and domain based on common sense, such as story understanding [Kalyanpur et al., 2020],
dialogue modeling [Ghosal et al., 2021], and text-based games [Murugesan et al., 2021]. Recently,
multi-modal question answering tasks also have progressed by contextualizing the questions in a
visual setting [Zellers et al., 2019] or an embodied simulation [Das et al., 2018]. The rich prior work
that focuses on these tasks has assumed the existence of benchmark-specific training data; zero-shot
models have not been thoroughly explored.

6. Related Work

Generalizable Commonsense Reasoning. UNICORN [Lourie et al., 2021] investigates continual
learning of commonsense knowledge from multiple benchmarks, ultimately aiming to perform
well on all of the benchmarks. This work demonstrates that LMs can learn from commonsense
benchmarks effectively and efficiently, reaching relatively high accuracy based on little training
examples. Prefix-tuning [Li and Liang, 2021] adapts LMs, by keeping the model parameters intact,
but extending them with a small set of additional parameters tuned separately for each benchmark.
Rather than updating model parameters, Autoprompt [Shin et al., 2020] extends the model input with
trigger tokens, which are updated during training. Such efforts share our vision to develop models
that can generalize to multiple commonsense benchmarks simultaneously. However, they assume
availability of training data, while we focus on zero-shot commonsense QA models.

Zero-shot Commonsense Reasoning. Zero-shot commonsense reasoning methods may elicit
knowledge from pre-trained LMs, via self-talk clarification prompts [Shwartz et al., 2020] or by
asking LMs to generate contrastive explanations [Paranjape et al., 2021]. As shown in prior work [Ma
et al., 2021a, Dou and Peng, 2022], KG-based approaches achieve superior performance compared to
pure LM-based methods for zero-shot commonsense QA. To use KGs for zero-shot pretraining and
evaluation, Banerjee and Baral [2020] pre-train an LM to perform knowledge completion, whereas
Bosselut et al. [2020] enhance the question based on knowledge completion models, and score an
answer candidate in relation to the context, question, and generated knowledge. Our work is based
on the framework of Ma et al. [2021a], which generates synthetic QA pairs from a consolidated KG
to pre-train LMs. They investigate the impact of different loss functions and knowledge sources,
showing that margin loss performs better than masked language modeling, and that more knowledge
generally performs better, though this might change depending on the knowledge-task alignment.
Dou and Peng [2022] extend this framework with several data transformation methods, out of which
measuring consistency between different prompt versions performs best. Complementing these
efforts, we perform a systematic study of model size and architecture, knowledge sampling and size,
and task properties, which allows us to obtain new state-of-the-art results, clarify the contribution
and interplay of different system components, and relate these contributions to task properties.

Model Generalization and Data Selection. Sen and Saffari [2020] analyzed LM’s ability to
generalize across five different QA datasets. Ma et al. [2021b] showed that models can have
drastically different performances by fine-tuning on different subset of the data. Swayamdipta
et al. [2020] proposed to select training instances based on models’ confidence and variability,
noting that training on less-confident examples is more beneficial for generalization. Follow-up
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work [Ethayarajh et al., 2021] proposed an information-theoretic metric for estimating the difficult
of a training example, treating as difficult the examples for which information is missing. Pleiss
et al. [2020] propose to identify erroneous data points based on their rank in the area under the
margin of a machine learning model. While prior work analyses model robustness by sub-sampling
instances from the task’s training set, we investigate the impact of knowledge selection, model
selection, and task properties when models are adapted on large KGs for commonsense QA. Ilievski
et al. [2021a] split synthetic data from KGs into 12 commonsense dimensions, revealing that some
kinds of knowledge are much more useful for pre-training compared to others. Our study provides a
comprehensive study framework that consolidates prior efforts on the task of zero-shot commonsense
QA with KGs.

7. Conclusions

Building robust Al agents with common sense requires in-depth understanding of the strengths and
weaknesses of current zero-shot adaptation methods. We designed a framework to study systemati-
cally the effect of synthetic knowledge, model choices, and task properties on the generalization of
LMs across commonsense QA tasks. Our best model improved over prior best zero-shot performance
by 5 points, obtaining new state-of-the-art results, and narrowing the gap with supervised models. Us-
ing the same LM as prior work still performs better despite using less synthetic data. Closer analysis
revealed that optimal knowledge size and sampling strategy is model-dependent, with encoder-only
models learning quicker from less data than encoder-decoder models. Interestingly, strategies that
perform balanced knowledge sampling led to robust performance. Strategies that focus on semantic
data dimensions also performed well as their questions are more challenging for the models. Most of
the improvement with synthetic data adaptation came on tasks with low domain overlap, signifying
strong generalization, and on questions with short answers and dissimilar answer candidates, owing
to the synthetic data properties. These findings point to three key directions for future work that uses
self-supervision with large KGs to create generalizable commonsense reasoning agents: creating
mixtures of specialized commonsense models, explainable zero-shot reasoning, and shift in evalua-
tion to more realistic tasks like story completion and embodied QA. All our code and data can be
downloaded at https://github.com/saccharomycetes/commonsense-with-KG.

References

Pratyay Banerjee and Chitta Baral. Self-supervised knowledge triplet learning for zero-shot question
answering. ArXiv, abs/2005.00316, 2020.

Chandra Bhagavatula, Ronan Le Bras, Chaitanya Malaviya, Keisuke Sakaguchi, Ari Holtzman,
Hannah Rashkin, Doug Downey, Scott Wen-tau Yih, and Yejin Choi. Abductive commonsense
reasoning. arXiv preprint arXiv:1908.05739, 2019.

Yonatan Bisk, Rowan Zellers, Ronan Le Bras, Jianfeng Gao, and Yejin Choi. PIQA: Reasoning about
Physical Commonsense in Natural Language. In Thirty-Fourth AAAI Conference on Artificial
Intelligence, pages 7432-7439, 2020.

Antoine Bosselut, Hannah Rashkin, Maarten Sap, Chaitanya Malaviya, Asli Celikyilmaz, and Yejin
Choi. Comet: Commonsense transformers for automatic knowledge graph construction, 2019.

11


https://github.com/saccharomycetes/commonsense-with-KG

ZHANG, ILIEVSKI, MA, FRANCIS & OLTRAMARI

Antoine Bosselut, Ronan Le Bras, and Yejin Choi. Dynamic neuro-symbolic knowledge graph
construction for zero-shot commonsense question answering, 2020.

Abhishek Das, Samyak Datta, Georgia Gkioxari, Stefan Lee, Devi Parikh, and Dhruv Batra. Embod-
ied question answering. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), June 2018.

Ernest Davis. Representations of commonsense knowledge. Morgan Kaufmann, 2014.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

Zi-Yi Dou and Nanyun Peng. Zero-shot commonsense question answering with cloze translation and
consistency optimization. arXiv preprint arXiv:2201.00136, 2022.

Kawin Ethayarajh, Yejin Choi, and Swabha Swayamdipta. Information-theoretic measures of dataset
difficulty. arXiv preprint arXiv:2110.08420, 2021.

Jonathan Francis, Nariaki Kitamura, Felix Labelle, Xiaopeng Lu, Ingrid Navarro, and Jean Oh. Core
challenges in embodied vision-language planning. Journal of Artificial Intelligence Research, 74:
459-515, 2022.

Deepanway Ghosal, Pengfei Hong, Siqi Shen, Navonil Majumder, Rada Mihalcea, and Soujanya
Poria. Cider: Commonsense inference for dialogue explanation and reasoning. arXiv preprint
arXiv:2106.00510, 2021.

Suchin Gururangan, Swabha Swayamdipta, Omer Levy, Roy Schwartz, Samuel R Bowman,
and Noah A Smith. Annotation artifacts in natural language inference data. arXiv preprint
arXiv:1803.02324, 2018.

Suchin Gururangan, Mike Lewis, Ari Holtzman, Noah A Smith, and Luke Zettlemoyer. Demix
layers: Disentangling domains for modular language modeling. arXiv preprint arXiv:2108.05036,
2021.

Filip Ilievski, Alessandro Oltramari, Kaixin Ma, Bin Zhang, Deborah L. McGuinness, and Pedro
Szekely. Dimensions of commonsense knowledge. Knowledge-Based Systems, 2021a.

Filip Ilievski, Pedro Szekely, and Bin Zhang. Cskg: The commonsense knowledge graph. In
Extended Semantic Web Conference (ESWC), 2021b.

Aditya Kalyanpur, Tom Breloff, David Ferrucci, Adam Lally, and John Jantos. Braid: Weaving sym-
bolic and neural knowledge into coherent logical explanations. arXiv preprint arXiv:2011.13354,
2020.

Daniel Khashabi, Sewon Min, Tushar Khot, Ashish Sabharwal, Oyvind Tafjord, Peter Clark, and

Hannaneh Hajishirzi. Unifiedqa: Crossing format boundaries with a single qa system. arXiv
preprint arXiv:2005.00700, 2020.

12



A STUDY OF ZERO-SHOT ADAPTATION WITH COMMONSENSE KNOWLEDGE

Ranjay Krishna, Yuke Zhu, Oliver Groth, Justin Johnson, Kenji Hata, Joshua Kravitz, Stephanie
Chen, Yannis Kalantidis, Li-Jia Li, David A Shamma, et al. Visual genome: Connecting language
and vision using crowdsourced dense image annotations. International journal of computer vision,
123(1):32-73, 2017.

Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation, 2021.

Xiang Lorraine Li, Adhi Kuncoro, Cyprien de Masson d’Autume, Phil Blunsom, and Aida Ne-
matzadeh. A systematic investigation of commonsense understanding in large language models.
arXiv preprint arXiv:2111.00607, 2021.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Dangi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining
approach. ArXiv, abs/1907.11692, 2019a.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining
approach. arXiv preprint arXiv:1907.11692, 2019b.

Nicholas Lourie, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Unicorn on rainbow:
A universal commonsense reasoning model on a new multitask benchmark. arXiv preprint
arXiv:2103.13009, 2021.

Kaixin Ma, Jonathan Francis, Quanyang Lu, Eric Nyberg, and Alessandro Oltramari. Towards
generalizable neuro-symbolic systems for commonsense question answering. In Proceedings of
the First Workshop on Commonsense Inference in Natural Language Processing, pages 22-32,
Hong Kong, China, November 2019. Association for Computational Linguistics. doi: 10.18653/
v1/D19-6003. URL https://aclanthology.org/D19-6003.

Kaixin Ma, Filip Ilievski, Jonathan Francis, Yonatan Bisk, Eric Nyberg, and Alessandro Oltra-
mari. Knowledge-driven Data Construction for Zero-shot Evaluation in Commonsense Question
Answering. In AAAI, 2021a.

Kaixin Ma, Filip Ilievski, Jonathan Francis, Satoru Ozaki, Eric Nyberg, and Alessandro Oltramari.
Exploring strategies for generalizable commonsense reasoning with pre-trained models. EMNLP
2021, 2021b.

John McCarthy. Artificial intelligence, logic and formalizing common sense. In Philosophical logic
and artificial intelligence, pages 161-190. Springer, 1989.

R Thomas McCoy, Ellie Pavlick, and Tal Linzen. Right for the wrong reasons: Diagnosing syntactic
heuristics in natural language inference. arXiv preprint arXiv:1902.01007, 2019.

George A Miller. Wordnet: a lexical database for english. Communications of the ACM, 38(11):
39-41, 1995.

Arindam Mitra, Pratyay Banerjee, Kuntal Kumar Pal, Swaroop Mishra, and Chitta Baral. Exploring
ways to incorporate additional knowledge to improve natural language commonsense question
answering. arXiv preprint arXiv:1909.08855, 2019.

13


https://aclanthology.org/D19-6003

ZHANG, ILIEVSKI, MA, FRANCIS & OLTRAMARI

Keerthiram Murugesan, Mattia Atzeni, Pavan Kapanipathi, Pushkar Shukla, Sadhana Kumaravel,
Gerald Tesauro, Kartik Talamadupula, Mrinmaya Sachan, and Murray Campbell. Text-based rl
agents with commonsense knowledge: New challenges, environments and baselines. In AAAI
pages 9018-9027, 2021.

Bhargavi Paranjape, Julian Michael, Marjan Ghazvininejad, Hannaneh Hajishirzi, and Luke Zettle-
moyer. Prompting contrastive explanations for commonsense reasoning tasks. In Findings of the
Association for Computational Linguistics: ACL-IJCNLP 2021, pages 4179-4192, Online, August
2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.findings-acl.366. URL
https://aclanthology.org/2021.findings—-acl.366.

Geoff Pleiss, Tianyi Zhang, Ethan R Elenberg, and Kilian Q Weinberger. Identifying mislabeled data
using the area under the margin ranking. arXiv preprint arXiv:2001.10528, 2020.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. arXiv preprint arXiv:1910.10683, 2019.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An
adversarial winograd schema challenge at scale. arXiv preprint arXiv:1907.10641, 2019.

Victor Sanh, Albert Webson, Colin Raffel, Stephen H. Bach, Lintang Sutawika, Zaid Alyafeai,
Antoine Chaffin, Arnaud Stiegler, Teven Le Scao, Arun Raja, Manan Dey, M Saiful Bari, Canwen
Xu, Urmish Thakker, Shanya Sharma Sharma, Eliza Szczechla, Taewoon Kim, Gunjan Chhablani,
Nihal Nayak, Debajyoti Datta, Jonathan Chang, Mike Tian-Jian Jiang, Han Wang, Matteo Manica,
Sheng Shen, Zheng Xin Yong, Harshit Pandey, Rachel Bawden, Thomas Wang, Trishala Neeraj,
Jos Rozen, Abheesht Sharma, Andrea Santilli, Thibault Fevry, Jason Alan Fries, Ryan Teehan,
Stella Biderman, Leo Gao, Tali Bers, Thomas Wolf, and Alexander M. Rush. Multitask prompted
training enables zero-shot task generalization, 2021.

Maarten Sap, Ronan Le Bras, Emily Allaway, Chandra Bhagavatula, Nicholas Lourie, Hannah
Rashkin, Brendan Roof, Noah A. Smith, and Yejin Choi. ATOMIC: an atlas of machine common-
sense for if-then reasoning. In Proc. of AAAI pages 3027-3035, 2019a.

Maarten Sap, Hannah Rashkin, Derek Chen, Ronan Le Bras, and Yejin Choi. Social 1Qa: Com-
monsense reasoning about social interactions. In Proc. of EMNLP-1IJCNLP, pages 4463—4473,
November 2019b.

Priyanka Sen and Amir Saffari. What do models learn from question answering datasets? In
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing
(EMNLP), pages 2429-2438, Online, November 2020. Association for Computational Linguistics.
doi: 10.18653/v1/2020.emnlp-main.190. URL https://www.aclweb.org/anthology/
2020.emnlp-main.190.

Taylor Shin, Yasaman Razeghi, Robert L. Logan IV, Eric Wallace, and Sameer Singh. AutoPrompt:

Eliciting knowledge from language models with automatically generated prompts. In EMNLP,
2020.

14


https://aclanthology.org/2021.findings-acl.366
https://www.aclweb.org/anthology/2020.emnlp-main.190
https://www.aclweb.org/anthology/2020.emnlp-main.190

A STUDY OF ZERO-SHOT ADAPTATION WITH COMMONSENSE KNOWLEDGE

Vered Shwartz, Peter West, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Unsupervised
commonsense question answering with self-talk. ArXiv, abs/2004.05483, 2020.

Robyn Speer, Joshua Chin, and Catherine Havasi. Conceptnet 5.5: An open multilingual graph of
general knowledge. In Proc. of AAAI, AAAT’ 17, page 4444-4451, 2017.

Swabha Swayamdipta, Roy Schwartz, Nicholas Lourie, Yizhong Wang, Hannaneh Hajishirzi, Noah A
Smith, and Yejin Choi. Dataset cartography: Mapping and diagnosing datasets with training
dynamics. arXiv preprint arXiv:2009.10795, 2020.

Alon Talmor, Jonathan Herzig, Nicholas Lourie, and Jonathan Berant. CommonsenseQA: A question
answering challenge targeting commonsense knowledge. In Proc. of NAACL, pages 4149-4158,
June 2019.

Denny Vrandeci¢ and Markus Krotzsch. Wikidata: a free collaborative knowledgebase. Communica-
tions of the ACM, 57(10):78-85, 2014.

Rowan Zellers, Yonatan Bisk, Ali Farhadi, and Yejin Choi. From recognition to cognition: Visual
commonsense reasoning. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), June 2019.

15



ZHANG, ILIEVSKI, MA, FRANCIS & OLTRAMARI

Implementation

B

For T5 training, we add the prefix “reasoning:” in front of every concatenation of question and
answer, then ask the model to predict “1” for true, and “2” for false.

Regarding libraries, we used python 3.7.10, pytorch 1.9.0 and transformers 4.11.3.

Among all the training sets, we are using learning rate of 1e~> , batch size of 32, weight decay
0.01, training epochs of 5, adam-epsilon of 1%, 31 = 0.9, 32 = 0.98, warm-up proportion of 0.05,
margin of 1.0.

For CPUs, we used Intel(R) Xeon(R) Gold 5217 CPU @ 3.00GHz (32 CPUs, 8 cores per sockets,
263GB ram).

For GPUs, we used Nvidia Quadro RTX 8000, and Nvidia Geforce 2080Ti.

Benchmarks

CommonsenseQA (CSQA) [Talmor et al., 2019] is a five-choice question answering benchmark
which evaluates a broad range of common sense aspects. Sociall QA (SIQA) [Sap et al., 2019b]
is a three-choice QA benchmark that requires reasoning about social interactions. Abductive NLI
(aNLI) [Bhagavatula et al., 2019] is formalized as natural language inference, where, given the
beginning and the ending of a story, the task is to choose the more plausible hypothesis out of two
options. Physicall QA (PIQA) [Bisk et al., 2020] is a binary choice task, which tests the ability of
models to employ physical reasoning. WinoGrande (WG) [Sakaguchi et al., 2019] is a binary choice
anaphora resolution task.

Training curves

0.8
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0.7 A — Roberta-large
— T5-3b
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=)
H
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Figure 4: Training curves of the models: RoBERTa-base, RoOBERTa-large, T5-small, T5-large, and
T5-3b. We use all of the models with 100% of our training data.

Effect of sampling strategies on RoOBERTa

The result in table 4 shows that the random, uniform and some dimensions perform best. It is worth
noting that the temporal dimension perform better than random in aNLI task, which is highly related
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to the time order, showing that specialized sampling strategies focusing on knowledge dimensions
perform well on particular subset of tasks.

Table 4: Evaluation results on the five benchmarks of RoOBERTa-large with different sampling
strategies. All samples have equivalent sizes, corresponding to 5% of the training data. The
best result per column is marked in bold. We focus on 5% of the data for computational

reasons.
Strategy aNLI I‘;‘l,)(g PIQA | SIQ AHDgs 0A Avg(LDO) Avg(HDO) Avg
Random 5% 71.5 60.0 72.6 63.6 66.4 68.0 65.0 66.8
temporal 72.7 61.1 72.1 62.3 65.8 68.6 64.1 66.8
desire 70.2 59.5 72.4 60.9 64.3 67.4 62.6 65.5
Dimension  taxonomic 67.0 58.0 69.2 51.0 59.0 64.7 55.0 60.8
quality 713 61.8 72.0 58.5 64.6 68.4 61.6 65.6
rel-other 653 555 69.7 51.5 58.1 63.5 54.8 60.0
Uniform 69.6 58.0 72.4 61.7 64.3 66.7 63.0 652
Vanilla-conf high 63.3 59.1 67.6 494 47.2 63.3 483 573
low 579 519 55.6 33.1 21.7 55.1 274 44.0
Conf high 66.2 589 70.3 59.4 62.2 65.1 60.8 634
low 714 592 72.1 62.6 65.7 67.6 642 66.2
Varibility high 67.4 56.8 65.5 48.2 44.0 63.2 46.1 564
low 654 56.0 68.6 54.4 61.0 63.3 577 61.1
Margin high 67.1 582 70.7 60.1 62.3 65.3 61.2 63.7
low 723  60.5 71.2 62.7 65.0 68.0 63.9 66.3

Table 5: Standard deviations of 4 models training on random sampled data in our main experiment,
all of them are relatively small. That means the results are consistent when we are doing
random samplings for training data for different times. We did not run three trials for T5-3b
due to the excessive time cost.

models Roberta-base  Roberta-large T5-base T5-large
standard deviations 0.330 0.511 0.170 0.236

The effect of task properties in relation to the synthetic data size

Table 6 shows that both models perform better on the questions with dissimilar answers when they
are trained with more data. The models perform optimal on the questions with similar answers with
less data. This confirms our explanation that the synthetic data directs the models towards better
performance on the questions with dissimilar answers. Furthermore, we see that TS5 is able to exploit
maximum amount of data for short answers, which is expected, given that most of the synthetic
questions are relatively short. When it comes to longer answers, TS5 performs best with less data,
which indicates that the pre-training data has limited utility for this set of questions. Curiously, this
pattern is not observed for ROBERTa - RoBERTa is unable to leverage more than 1% of the data to
improve its performance on the questions with short answers. We hypothesize that this is due to the
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Table 6: Evaluation results on the similarity, length, and vocabulary overlap quartiles of PIQA data
for the models ROBERTa and T5-3b with different data sizes. Best results per model and
similarity quartile are marked in bold.

. Similarity Length Vocabulary overlap
Model  DataSize | ,50 500, 759, 100% | 25% 50% 75% 100% | 25% 50% 75% 100%
0% 336 639 719 809 | 630 663 651 759 | 623 713 699 667
1% 566 735 756 787 | 688 69.6 680 780 | 68.6 713 743 702
Roberta 5% 603 724 765 804 | 667 683 721 826 | 686 735 749 726
10% 582 711 732 798| 67.1 659 702 791 | 680 724 706 713
33% 588 720 747 780 | 680 687 706 763 | 669 717 728 722
50% 571 704 739 802 | 664 661 712 778 | 658 700 749 709
100% | 556 683 693 748 | 627 652 669 73.0 | 634 659 719 667
0% 488 483 519 515 501 502 501 500 | 471 526 512 496
1% 617 739 736 787 | 712 700 702 765 | 682 704 769 2.4
T5.3h 5% 603 724 719 793 | 684 687 678 791 | 641 707 716 717
10% 654 759 754 826 | 706 748 725 813 | 699 741 718 7114
33% 673 772 800 824 | 734 746 778 81| 704 787 797 780
50% 688 772 802 843 | 732 763 773 837 | 721 791 802 791
100% | 682 761 782 841 | 723 719 765 793 | 789 772 758 767

limited model capacity of RoBERTa, causing limited ability to store additional knowledge from the
synthetic data. We do not see a clear correlation between vocabulary overlap and model accuracy
across different data sizes.
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