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Abstract
Knowledge graph (KG) link prediction is a fundamental task in artificial intelligence,

with applications in natural language processing, information retrieval, and biomedicine.
Recently, promising results have been achieved by leveraging cross-modal information in
KGs, using ensembles that combine knowledge graph embeddings (KGEs) and contextual
language models (LMs). However, existing ensembles are either (1) not consistently effective
in terms of ranking accuracy gains or (2) impractically inefficient on larger datasets due
to the combinatorial explosion problem of pairwise ranking with deep language models.
In this paper, we propose a novel tiered ranking architecture CascadER to maintain the
ranking accuracy of full ensembling while improving efficiency considerably. CascadER
uses LMs to rerank the outputs of more efficient base KGEs, relying on an adaptive subset
selection scheme aimed at invoking the LMs minimally while maximizing accuracy gain over
the KGE. Extensive experiments demonstrate that CascadER improves MRR by up to 9
points over KGE baselines, setting new state-of-the-art performance on four benchmarks
while improving efficiency by one or more orders of magnitude over competitive cross-
modal baselines. Our empirical analyses reveal that diversity of models across modalities
and preservation of individual models’ confidence signals help explain the effectiveness of
CascadER, and suggest promising directions for cross-modal cascaded architectures.

1. Introduction

Knowledge graphs (KGs) are critical ingredients for applications across natural language
processing, information retrieval, and biomedicine [Weikum et al., 2021]. Motivated by the
observation that most KGs have high precision but low coverage, the goal of knowledge
graph link prediction, also known as KG completion, is to automatically augment KGs
with new factual information by predicting missing links between entities [Nickel et al., 2015].

Link prediction is typically framed as a ranking problem in a multi-relational graph [Bordes
et al., 2013]: Given a query consisting of a head entity (e.g., aspirin) and relation type
(e.g., treats), the task is to rank candidate tail entities by the likelihood that they answer
the query and form a factual link the graph. Currently, the prevailing approach is to learn
vector representations of entities and relations, or knowledge graph embeddings (KGEs),
and use vector composition functions to score candidate links [Ruffinelli et al., 2020]. While
often effective at modeling structural KG patterns [Sun et al., 2019], KGEs typically do not
leverage textual information like entity descriptions in KGs, even though such texts help
ameliorate KG sparsity and improve ranking accuracy [Xie et al., 2016, Chandak et al., 2022].

∗. Work performed during an internship at the Allen Institute for Artificial Intelligence.
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Figure 1: CascadER maintains accuracy (y-axis) while improving efficiency (x-axis) by 1+
orders of magnitude over our most competitive ensemble baseline on CoDEx-M. We use a
three-tier CascadER with dynamic pruning at quantiles q = 0.5 and q = 0.9 (§ 3.3).

To address this gap, recent studies have proposed to ensemble KGEs with advanced
language models (LMs) like BERT [Devlin et al., 2019] in order to integrate structure and
text for link prediction [Nadkarni et al., 2021, Wang et al., 2021]. These studies suggest the
promise of cross-modal ensembles, but results are inconclusive due to two challenges. First,
the cross-modal ensembles achieving the largest gains rely on impractically expensive models
that require jointly encoding pairs of texts with deep LMs [Nadkarni et al., 2021], greatly
increasing the computational cost of inference—e.g., from a few minutes with a KGE to
one month with an LM on the same dataset [Kocijan and Lukasiewicz, 2021]). Second, the
cross-modal ensembles that rely on more efficient “Siamese” dual-encoder LM architectures
do not necessarily improve performance over KGEs alone [Wang et al., 2021].

In this paper, we introduce a novel cross-modal ensemble that simultaneously maximizes
ranking accuracy, i.e., mean reciprocal rank (MRR) and hits@k, while maintaining efficiency.
Our approach, CascadER, is a tiered ranking architecture that uses a sequence of LMs
of increasing complexity to adaptively reweight and rerank the outputs of more efficient
base KGEs. CascadER relies on a novel subset selection scheme: At each tier t of the
architecture, we predict the minimal set of candidates that should progress to be reweighted
at tier t + 1. By passing progressively smaller sets of outputs from one tier to the next,
CascadER balances accuracy gain and efficiency, as it minimizes invocation of the more
computationally complex LMs further down the cascade.

Evaluated on five link prediction datasets, CascadER achieves state-of-the-art per-
formance, improving MRR over the strongest KGE baseline by up to 9 points, while also
improving efficiency by orders of magnitude over our most accurate but computationally
intensive ensemble baseline (Figure 1). Our qualitative analyses illuminate how cross-modal
ensembling uniquely exploits complementary signals among graph and text models: We
observe that promoting diversity and preserving confidence signals among the models in the
ensemble help explain CascadER’s excellent performance, suggesting promising directions
for research in cross-modal cascaded architectures.

2. Preliminaries

In this section, we provide preliminaries on single-modality and cross-modal approaches for
link prediction. We discuss additional related work in Appendix A.1.
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2.1 Problem definition

We consider the task of ranking-based link prediction in a knowledge graph G consisting
of entities E , relations R, and factual (head, relation, tail) triples (h, r, t) ∈ E ×R× E . The
link prediction task consists of two directionalities: Score all tail entities t̂ ∈ E to “answer
queries”—that is, complete known KG links—(h, r, ?), and score all head entities ĥ ∈ E to
answer queries (?, r, t). The evaluation metrics are mean reciprocal rank (MRR), or the
average reciprocal of each gold answer entity’s rank over all queries, and hits@k, or the
proportion of queries for which the gold answer entity is ranked in the top-k candidates.

A link prediction model is a scoring function f : E ×R× E → R that outputs real values
indicating the plausibility of factual links in G. At inference time, assume that we have Ntest
link prediction queries. For each query we have |E| potential answers, which are the entities
in the KG. We define a query-answer score matrix S ∈ RNtest×|E|, in which Sij denotes the
predicted probability that entity j answers link prediction query i to form a factual link in G.
Then, for each query i, all candidate entities j are ranked by their score descending, and the
model’s ranking accuracy is evaluated using these rankings.

2.2 Single-modality link prediction

Structure-based The most competitive structure-only approaches to link prediction are
shallow knowledge graph embeddings (KGEs), which are decoder models that train entity
and relation embeddings by optimizing with ranking losses. The main architectural distinction
among different KGEs is how embeddings are combined to produce ranking scores for links,
as both additive [Bordes et al., 2013, Sun et al., 2019] and multiplicative [Yang et al., 2015,
Trouillon et al., 2016, Balazevic et al., 2019] scoring functions have been proposed. For
details, we refer the reader to relevant surveys [Wang et al., 2017, Ji et al., 2020].

Text-based Recent text-based approaches to link prediction rely on advanced encoder
language models (LMs) like BERT [Devlin et al., 2019] based on the Transformer architec-
ture [Vaswani et al., 2017]. Let Xh = [w1, . . . , wh] denote the description of head entity h
and Xt = [w1, . . . , wt] the description of tail entity t; for example, given the entity aspirin,
a corresponding description could be “aspirin is known as a salicylate and a nonsteroidal
anti-inflammatory drug.” Siamese or dual-encoder link prediction approaches assume two
LMs, potentially with shared weights [Wang et al., 2021]. As input, one LM takes the head
entity description [[CLS], Xh, [SEP]] and the other takes the tail entity description [[CLS],
Xt, [SEP]], where [CLS] and [SEP] refer to the LM’s special classification and delimiter
tokens. Both encoders output embeddings of their inputs, which are optimized such that
linked entity pairs in the KG are scored highly compared to negative samples.1

In contrast to dual-encoders, cross-encoder LM approaches pack entity description
pairs into a single sequence [[CLS], Xh, [SEP], Xt, [SEP]], and perform full cross-attention
over all tokens in the sequence [Yao et al., 2019, Nadkarni et al., 2021]. At the output
of the encoder, these approaches stack a scoring layer and train with ranking loss [Kim
et al., 2020]. Cross-encoder LMs are typically more powerful for pairwise text ranking than
dual-encoders [Luan et al., 2021]. However, they are less efficient. Whereas dual-encoders

1. Previous studies have found that the relation text may be omitted, and that including a relation
disambiguation loss term in training is sufficient [Kim et al., 2020, Nadkarni et al., 2021].
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can precompute all text embeddings and score text pairs at test time with fast vector dot
products [Karpukhin et al., 2020], cross-encoders must jointly encode and score each text
pair, which is impractically slow for large-scale text ranking [Reimers and Gurevych, 2019].

2.3 Cross-modal link prediction

Structure and text have recently been integrated for link prediction by ensembling KGEs
and LMs with additive reweighting [Wang et al., 2021, Nadkarni et al., 2021]. Given a query
i and candidate answer j, additive reweighting outputs a new link prediction score as the
convex combination of the base models’ scores:

Sens
ij = α · SKGE

ij + (1− α) · SLM
ij , (1)

where the weight α ∈ [0, 1] is a hyperparameter tuned on a held-out set.
As shown in Figure 1, additive reweighting can significantly improve link prediction

ranking accuracy, up to 4 points MRR. However, Figure 1 also shows that ensembling
increases inference complexity. Whereas the base KGE requires under one minute to score all
query-answer pairs on a single NVIDIA Quadro RTX 8000 GPU, the KGE + dual-encoder
ensemble takes around 3 hours, and the KGE + cross-encoder ensemble takes over 11
days on the same hardware. This added expense is due to the fact that deep Transformer
LMs typically consist of 12+ layers, and the complexity of Transformer encoding scales
quadratically with the input length. Moreover, as discussed previously, cross-encoders must
jointly encode all query/answer pairs, which further increases their computational cost.

3. Methodology

Assuming we are willing to pay some computational cost to improve link prediction perfor-
mance, how can we achieve the accuracy of the cross-encoder ensemble while maintaining the
efficiency of the dual-encoder ensemble, as shown in Figure 1? Our answer is CascadER,
a cross-modal cascade architecture that achieves a delicate balance between these goals.

3.1 CascadER overview

As illustrated in Figure 2, CascadER is a progressive reranking architecture. We first obtain
a base set of link prediction scores with an efficient KGE, then use increasingly complex
LMs to rerank the base scores on progressively smaller sets of outputs—specifically, only the
highly-ranked, most promising candidates, while leaving the rankings of the less promising
candidates static. CascadER thus benefits from the performance gains of cross-modal
ensembles without the full computational overhead (c.f. Figure 1).

As input, we are given n ≥ 2 trained link prediction models {f (i), i = 1 . . . n} consisting
of one KGE and one or more LMs. We sort the models by computational complexity, leading
to an ordered sequence (f (1), . . . , f (n)) in which f (1) is the KGE and the subsequent models
are LMs in ascending order of complexity (i.e., dual-encoders before cross-encoders). We
first use the KGE to score all query/answer pairs in the inference set, leading to a score
matrix S(1) ∈ RNtest×|E| in which S

(1)
ij denotes the KGE’s plausibility score between query i

and entity j. Then, at each tier t = 1, . . . , n− 1, we apply a pruning function that, for each
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Figure 2: CascadER sequential reranking architecture.

query i, selects a subset of candidate answer entities E(t)
i ⊆ E to be reranked by the next-tier

LM f (t+1); we postpone the discussion of pruning strategies to § 3.2 and 3.3.
For link prediction query i (that is, a query entity and relation type) and candidate

answer entity j, we define the additive reranking function between tiers t and t+1 as follows:

I
j∈E(t)

i

[
α(t) · S(t)

ij +
(
1− α(t)

)
· S(t+1)

ij

]
+ I

j ̸∈E(t)
i

[
S
(t)
ij

]
, (2)

in which I denotes the set indicator function, S(t)
ij denotes the query-answer score output at

tier t, and α(t) ∈ [0, 1] is a hyperparameter that controls the additive influence of model f (t)

in reranking the candidates in E(t)
i . Intuitively, (2) states that if the candidate answer entity

j is within the subset E(t)
i of candidates progressed to tier t+ 1, then we reweight its score

with that of model f (t+1) at tier t+ 1, else we do not reweight its score.

3.2 Static candidate pruning

Candidate pruning with CascadER should balance two aims: (1) Coverage: For each link
prediction query (h, r, ?) or (?, r, t), progress a sufficiently large set of candidate entities to
the following tier, in order to increase coverage of the correct candidates; and (2) Efficiency :
Progress as few candidates as possible to avoid unnecessarily invoking the next-tier reranking
model on candidates that would not benefit from it.

A straightforward pruning approach used in information retrieval cascades is to progress
only the top-k candidates from tier to tier using a predefined, global value of k [Wang et al.,
2011, Matsubara et al., 2020]. This value helps control the accuracy-efficiency tradeoff, as a
smaller k decreases coverage of promising candidates but improves efficiency, whereas a larger
k increases coverage of promising candidates but incurs more computational cost. Formally,
given query i and a selected value of k, we define static pruning as selecting the subset of
candidates E(t)

i such that E(t)
i = argmaxE(t)

i ⊂E and |E(t)
i |=k

∑|E|
j=1 S

(t)
ij .

The key challenge with static pruning is selecting the “right” value of k. One solution
is to set k ad-hoc, e.g., k = 100 [Matsubara et al., 2020]. However, this approach may
result in suboptimal performance from the accuracy or efficiency perspectives. To address
this challenge, we propose a more principled strategy that searches for the best value of k
per dataset and per tier t of the cascade. Given tier t and held-out query i, we obtain the
cascade’s rank R

(t)
i of the gold answer entity. We construct a distribution of ranks R

(t)
i over

all hold-out queries, and use quantiles of this distribution to choose the grid of k(t) over
which to search. For example, quantiles of 0.5, 0.75, and 0.9 means that we search over k(t)
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Structure Avg. desc. length|E| |R| # train # dev # test

CoDEx-S 2,034 42 32,888 1827 1828 259.24
RepoDB 2,748 1 5,342 667 668 55.46
FB15K-237 14,541 237 272,115 17,535 20,466 138.95
CoDEx-M 17,050 51 185,584 10,310 10,311 159.48
WN18RR 40,943 11 86,835 3,034 3,134 13.91

Table 1: Statistics of the existing KG link prediction datasets considered in our experiments.
Avg. desc. length refers to the average description of an entity in the KG.

equal to the median, 75th percentile, and 90th percentile of ranks R
(t)
i , which ensures that

our selected k(t) is tailored to each dataset and each tier of reranking.

3.3 Dynamic candidate pruning

We propose to extend static pruning to an adaptive dynamic pruning approach. At any
tier t of CascadER, we improve the quality of the current ranking by predicting how many
top-ranked candidates for each query we should progress to the next tier. That is, given
a query i and tier t, we predict an integer k̂

(t)
i that represents the number of candidates

to progress to tier t+ 1. To achieve this, we train a lightweight model to predict the rank
of the gold answer entity using quantile regression [Koenker and Hallock, 2001]. Formally,
given a quantile q and the rank of the gold answer entity R

(t)
i at tier t, we train a regressor

to predict k̂
(t)
i by minimizing Lq(k̂

(t)
i , R

(t)
i ) = max

[
q(R

(t)
i − k̂

(t)
i ), (q − 1)(R

(t)
i − k̂

(t)
i )

]
. As

input features, we represent the i-th query by its sorted |E|-dimensional score distribution
S
(t)
i1 , . . . S

(t)
i|E| from tier t of the cascade, hypothesizing that these score distributions encode

uncertainty information correlated to the relative “difficulty” of queries. In practice, we
implement our regressor as a single-layer MLP trained on a random half of the dev set, and
validated on the remaining dev examples.2 We will subsequently show that this approach
boosts CascadER’s ability to balance accuracy and efficiency compared to static pruning.

4. Evaluation

As introduced in § 2.1, we evaluate CascadER for the link prediction task. Our evaluation
metrics are MRR and hits@k for k ∈ {1, 3, 10}. Following the literature standard [Ruffinelli
et al., 2020], we report metrics in the filtered setting to avoid false negatives.

4.1 Datasets

We consider the following link prediction benchmarks, as shown in Table 1: FB15K-
237 [Toutanova and Chen, 2015], WN18RR [Dettmers et al., 2018], CoDEx-S and
CoDEx-M [Safavi and Koutra, 2020], and RepoDB [Brown and Patel, 2017, Nadkarni
et al., 2021]. In terms of content, FB15K-237, CoDEx-S, and CoDEx-M comprise
encyclopedic knowledge drawn from Freebase and Wikidata, WN18RR is a subset of the
WordNet semantic network, and RepoDB is a subset of the RepoDB drug repurposing
biomedical database [Brown and Patel, 2017]. For all datasets, we use the standard splits

2. Note that if the dev set is unavailable, we can alternatively hold out a small subset of train examples.
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provided by the authors. We use the entity descriptions provided by Wang et al. [2021] for
FB15K-237 and WN18RR, Nadkarni et al. [2021] for RepoDB, and Safavi and Koutra
[2020] for CoDEx-S and CoDEx-M.

4.2 Baselines

KGE baselines We consider the competitive RESCAL [Nickel et al., 2011], TransE [Bor-
des et al., 2013], ComplEx [Trouillon et al., 2016], and RotatE [Sun et al., 2019] KGEs.

LM baselines We consider the StAR dual-encoder architecture [Wang et al., 2021] and
the KG-BERT cross-encoder architecture [Yao et al., 2019], both trained in a multi-task
setting with triple classification, margin ranking, and relation classification losses following
the literature [Kim et al., 2020]. Due to the inference cost of KG-BERT on the larger
datasets FB15K-237 and WN18RR (e.g., around one month for FB15K-237 [Kocijan and
Lukasiewicz, 2021]), we report performance for these datasets from [Kim et al., 2020].

Ensemble baselines We consider the following additive ensembling baselines as defined
in § 2.3: KGE + KGE ensembles the two strongest KGE baselines in terms of dev MRR;
KGE + StAR [Wang et al., 2021] ensembles the best KGE with StAR; and KGE +
KG-BERT [Nadkarni et al., 2021] ensembles the best KGE with KG-BERT.

SOTA We report the best published performance of which we are aware as of April 2022:
NBFNet [Zhu et al., 2021] on FB15K-237, self-adaptive KGE + LM ensembling [Wang et al.,
2021] on WN18RR, and ComplEx for the CoDEx datasets. Note that RepoDB has not
been considered under the full entity ranking setting before, as Nadkarni et al. [2021] used a
partial sample of negatives for each test query, so we do not report SOTA for RepoDB.

4.3 CascadER

Our first-tier KGE in CascadER is the best-performing baseline KGE in terms of dev MRR.
We search for the optimal cascade in terms of dev MRR among the following hyperparameters:
The choice of LMs (StAR dual-encoder, KG-BERT cross-encoder, or both); candidate
pruning strategy (static versus dynamic); quantile q ∈ {0.5, 0.75, 0.9, 0.95}; and weighting
hyperparameter α(t) ∈ [0.05, 0.95] at each tier. Appendix A.2 provides additional details on
hardware, software, and model selection.

4.4 Inference budget

We imposed an inference time limit on CascadER and all baselines. First, we set a global
maximum inference time of 24 hours on a single NVIDIA Quadro RTX 8000 GPU with 48
GB of RAM as a hard limit. Then, we set dataset-specific budgets ≤ 24H roughly as a
function of the test set size and KG size. For example, WN18RR has fewer test queries and
shorter text lengths (Table 1) than FB15K-237, but 3× as many answer entities. Given a
budget of 24H for FB15K-237, our largest dataset, we decided to allow 25% of that time
to WN18RR to account for these differences. Concretely, we set inference time limits to 2
hours for our two smallest datasets CoDEx-S and RepoDB, 24 hours for our two largest
datasets CoDEx-M and FB15K-237, and 6 hours for WN18RR. To understand the impact
of our chosen time limits, we vary these budgets in an ablation in § 4.5.
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FB15K-237 WN18RR
MRR H@1 H@3 H@10 MRR H@1 H@3 H@10

RESCAL 0.3559 0.2629 0.3926 0.5406 0.4666 0.4387 0.4797 0.5172
TransE 0.3128 0.2206 0.3473 0.4973 0.2278 0.0531 0.3682 0.5201
ComplEx 0.3477 0.2533 0.3836 0.5359 0.4749 0.4381 0.4898 0.5474
RotatE 0.3333 0.2396 0.3676 0.5218 0.4781 0.4395 0.4941 0.5527

StAR 0.296 0.205 0.322 0.482 0.401 0.243 0.491 0.709
KG-BERT 0.267 0.172 0.298 0.458 0.331 0.203 0.383 0.597

KGE + KGE 0.3630 0.2672 0.4016 0.5535 0.4900 0.4521 0.5016 0.5617
KGE + StAR 0.3643 0.2709 0.3989 0.5522 0.5385 0.4716 0.5645 0.6651
KGE + KG-BERT OOT OOT OOT OOT OOT OOT OOT OOT

SOTA 0.415 0.321 0.454 0.599 0.551 0.459 0.594 0.732

CascadER 0.3860 0.2903 0.4231 0.5782 0.5651 0.4756 0.6126 0.7379

Table 2: CascadER outperforms or is competitive with the state of the art on FB15K-237
and WN18RR. Bold + underline: Best performance. Underline: Second-best perfor-
mance. The performance of StAR, KG-BERT, and SOTA are reported from papers referenced
in 4.2. OOT refers to out-of-time using our inference cost budget (§ 4.4).

CoDEx-M RepoDB
MRR H@1 H@3 H@10 MRR H@1 H@3 H@10

RESCAL 0.3173 0.2444 0.3477 0.4557 0.4351 0.3144 0.4903 0.6767
TransE 0.3026 0.2232 0.3363 0.4535 0.3472 0.2043 0.3728 0.6400
ComplEx 0.3365 0.2624 0.3701 0.4758 0.4620 0.3406 0.5225 0.7043
RotatE OOM OOM OOM OOM 0.2971 0.1811 0.4903 0.5314

StAR 0.2726 0.1888 0.3042 0.4342 0.3472 0.2043 0.4102 0.6400
KG-BERT OOT OOT OOT OOT 0.2991 0.1602 0.3428 0.5996

KGE + KGE 0.3466 0.2695 0.3808 0.4925 0.4637 0.3398 0.5262 0.7081
KGE + StAR 0.3554 0.2767 0.3901 0.5064 0.4774 0.3496 0.5434 0.7208
KGE + KG-BERT OOT OOT OOT OOT 0.5101 0.3713 0.5771 0.7799

SOTA 0.3365 0.2624 0.3701 0.4758 - - - -

CascadER 0.3830 0.2998 0.4221 0.5423 0.5156 0.3817 0.5831 0.7814

Table 3: CascadER achieves state-of-the-art test performance on CoDEx-M and RepoDB.

4.5 Results and discussion

Table 2 and 3 provide link prediction performance results for FB15K-237 and WN18RR,
and CoDEx-M and RepoDB, respectively; Table 7 in Appendix A.3 provides results on
CoDEx-S, omitted here for brevity. We observe that CascadER achieves robust and
appreciable gains over baselines across datasets, setting a new state of the art on WN18RR,
CoDEx-S, CoDEx-M, and RepoDB, and performing second to the reported SOTA on
FB15K-237. It outperforms the best KGE by up to 8.70 points MRR (WN18RR) and the
best LM by up to 16.84 points MRR (RepoDB), demonstrating that cross-modal ensembling
can significantly improve upon single-modality approaches.

We also remark that full additive ensembling is not necessary to maximize accuracy. Our
KGE + KG-BERT additive ensemble baseline is competitive on CoDEx-S and RepoDB,
but it encounters out-of-time errors on the other datasets. By contrast, CascadER achieves
state-of-the-art or competitive performance on all five datasets while staying within our time
limits. This suggests that full additive ensembling is not necessary to achieve the majority of
gains in link prediction, and that cascaded reranking is sufficient.
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(a) Dynamic pruning balances ac-
curacy and efficiency better than
static pruning.

(b) CascadER is effective at any
level of cost constraint compared to
the base KGE.

Figure 3: Top-left corner is best: Pareto curve analysis on the dev set of FB15K-237. We
use quantiles q ∈ {0.5, 0.75, 0.9, 0.95, 1} in our analyses and exclude any quantiles that lead
to CascadER exceeding our inference time limit of 24 hours.

Pareto curve analysis We provide a Pareto curve analysis to characterize the accuracy-
efficiency tradeoff of CascadER. In Figure 3, we plot the accuracy (dev MRR) and efficiency
(inference cost in wall-clock time) against CascadER’s key hyperparameters, the candidate
pruning strategy and the number of tiers. We observe that dynamic pruning balances
accuracy and efficiency better than static pruning. Figure 3a shows that dynamic pruning
leads to steeper MRR improvements than static pruning, with comparable inference times.

Consistent with the information retrieval literature [Matsubara et al., 2020, Luan et al.,
2021], cross-encoders improve ranking performance more than their dual-encoder counterparts.
Figure 3b confirms that two-tiered CascadER with a cross-encoder is much more accurate
than two-tiered CascadER with a dual-encoder. At an inference time of around 1000
seconds, our two-tiered dual-encoder and cross-encoder architectures achieve 0.3683 and
0.3738 MRR respectively, suggesting that reranking very few candidates with a cross-encoder
is often more beneficial than reranking many candidates with a dual-encoder.

Parameter comparison A natural question is whether CascadER’s improvement is
simply a result of increased representational capacity, i.e., more parameters. Depending on
the dataset, the number of KGE parameters is on the order of 100K-10M, scaling linearly
(for most architectures) with the number of entities and relations in the KG. By contrast,
each LM, when implemented with BERT-Base, has roughly 100M parameters, regardless
of KG size; therefore, CascadER has more parameters than all KGE baselines. However,
note that LMs alone for the link prediction task are not competitive with KGEs, as shown
in Tables 2 and 3, which suggests that increased parameter count does not fully explain
performance improvement. Moreover, the Pareto improvements we observe are in comparison
to ensembles of the same number of parameters (e.g., 2-tier dual-encoding CascadER vs
2-tier cross-encoding CascadER, Figure 3b), where we achieve up to an order of magnitude
efficiency improvement at the same or better accuracy.

Inference budget ablation We next analyze the impact of changing the inference budget
(§ 4.4) on CascadER’s performance. As shown in Table 4, CascadER’s performance
does not change drastically when tightening the budget. Halving the inference budget for
CoDEx-M from 24H to 12H, we get a test accuracy of 0.3787 MRR for CascadER, a
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CoDEx-M WN18RR

Best baseline 0.3554 0.5510
CascadER, half budget 0.3787 0.5590
CascadER, full budget 0.3830 0.5651

Table 4: CascadER still maintains SOTA performance (MRR) under tightened inference
budgets: Inference time limit ablation. “Full budget” refers to the time limits imposed in
§ 4.4, and “half budget” refers to a time limit of half that.

(KGE, KGE) (KGE, dual-enc.) (KGE, cross-enc.)

RepoDB 0.7371 0.3494 0.2025
CoDEx-S 0.8081 0.7265 0.6163
CoDEx-M 0.6471 0.5406 0.4865

Table 5: The ranks of gold answers are least correlated (Pearson’s correlation coefficient, all
p-values 0) between the KGE and the cross-encoder on the dev set, suggesting that these
two model types provide the most diverse or complementary link prediction performance.

drop of < 1 point MRR from our best CascadER under 24H, and still an improvement
of 2 points MRR over the next-best baseline. Similarly, halving the inference budget for
WN18RR from 6H to 3H, we again observe a drop of < 1 point MRR.

Qualitative analysis Finally, we elucidate the benefits of cross-modal ensembling from
the perspective of model diversity, a key characteristic of effective ensembles [Kuncheva and
Whitaker, 2003]. We explore two simple facets of diversity between pairs of models in an
ensemble. The first is rank correlation, or the Pearson correlation coefficient of the gold
answer ranks between two models. As shown in Table 5, rank correlation is highest between
pairs of KGEs and lowest between the KGE and cross-encoder. This observation corresponds
well with ensemble performance, as we find that the most “diverse” ensembles in terms of
rank correlation (i.e., those that combine a KGE + cross-encoder) are the most competitive.

Next, we consider each model’s empirical score distributions to two queries in Figure 4.
The figure demonstrates that the cross-encoder’s score distributions are skewed left compared
to those of the KGE and the dual-encoder. Moreover, we find that this trend holds across
queries and datasets, suggesting a fundamental difference in scoring behavior. We hypothesize
that cross-encoders may filter out irrelevant candidate answers to queries more aggressively,
perhaps because they model term overlap between text pairs with relatively high precision
compared to dual-encoder models that do not use cross-attention [Luan et al., 2021]. Again,
this finding corresponds well with ranking performance, as the model pairs with more diverse
score distributions (i.e., KGEs and cross-encoders) make stronger cascades.

Finally, having established the importance of diversity, we answer the question: When
ensembling highly diverse models, how crucial is additive reweighting as defined in (1), versus
simply summing the models’ individual scores without reweighting? Across all datasets, we
observe CascadER’s dev MRR drops 6-8 points without reweighting (see Appendix A.3
for exact comparisons). To explain this phenomenon, we investigate the average margin
between the gold answer and all negative candidates for a query, i.e., for query i with gold tail
entity j+ and N− negative candidates j−, the average margin is defined as 1

N−
∑

j− S+
ij −S−

ij .
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Figure 4: The cross-encoder’s score distributions are skewed left compared to the KGE’s and
dual-encoder’s score distributions. Shown are two randomly-selected link prediction queries
from CoDEx-M. The trends in the plots hold across queries and datasets.

(a) KGE + cross-enc. without reweighting (b) KGE + cross-enc. with reweighting

Figure 5: Ensembling with additive reweighting preserves the correlation between gold answer
ranks and average margins.

In Figure 5, we plot the gold ranks and reciprocal ranks of answer entities on CoDEx-M
against their average margins with and without reweighting a KGE + cross-encoder ensemble.
We observe that the correlation between margins and gold ranks is higher under additive
reweighting, which suggests that reweighting helps preserve the confidence signals in the
base models’ margins, whereas ensembling without reweighting dilutes these signals.

5. Conclusion

In this paper, we considered the task of KG link prediction with cross-modal ensembles.
Motivated by the inherent accuracy-efficiency tradeoff, we proposed CascadER, a novel
cross-modal reranking architecture that uses deep language models to rerank the outputs
of knowledge graph embeddings. We showed that CascadER achieves state-of-the-art
performance on multiple link prediction benchmarks by effectively combining structure and
text, while improving efficiency over our strongest ensemble baseline by orders of magnitude.

Our work opens up several avenues for future research. For one, more advanced candidate
pruning strategies may further increase the efficiency of CascadER while maintaining
accuracy. For another, “hybrid” LMs that attempt to interpolate between the efficiency of
dual-encoders and the effectiveness of cross-encoders [Khattab and Zaharia, 2020, Luan et al.,
2021] may improve CascadER’s ability to balance these two desiderata. Finally, extensions
of CascadER may help solve the inductive link prediction, in which novel entities/relations
are presented at test time [Galkin et al., 2022], as contextual LMs are naturally inductive
and can correct the shortcomings of transductive KGEs in this setting.
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Appendix A.

A.1 Additional related work

Joint modeling on KGs The task of inferring novel links in KGs has been widely studied.
The most prevalent approaches are structure-only KG embeddings [Nickel et al., 2011, Bordes
et al., 2013, Trouillon et al., 2016, Sun et al., 2019, Balazevic et al., 2019, Ji et al., 2020].
That said, prior to the advent of pretrained contextual LMs, a few cross-modal structure and
text approaches for link prediction were proposed [Toutanova et al., 2015, 2016, Xie et al.,
2016]. Such approaches rely on convolutional text representation architectures to obtain
embeddings of entities or relations using, e.g., entity descriptions [Xie et al., 2016] or textual
relation mentions [Toutanova et al., 2015]. These text-based embeddings are then composed
using structural KG embedding scoring functions to score novel links in the KG.

More recently, motivated by the successes of Transformer language models, pretrained
Transformer LMs like BERT [Devlin et al., 2019] have begun to gain traction for variants of
the link prediction task [Yao et al., 2019, Kim et al., 2020, Daza et al., 2021, Wang et al.,
2021, Nadkarni et al., 2021]. The approaches most related to CascadER are the ensembles
considered by Wang et al. [2021] and Nadkarni et al. [2021], both of which construct additive
ensembles of structural KG embeddings and contextual LMs. Compared to these baseline
ensembles, CascadER improves accuracy and/or efficiency over both.

Cascade models Multi-stage cascade ensembles have been successful in computer vi-
sion [Viola and Jones, 2001, Wang et al., 2022] and text retrieval [Wang et al., 2011, Chen
et al., 2017, Gallagher et al., 2019, Lin et al., 2021]. Recently, several studies have proposed
to use BERT as a late-stage ranker in multi-stage document retrieval [Nogueira et al., 2019]
and passage retrieval [Matsubara et al., 2020] pipelines. Similar to our work, these studies
are motivated by the observation that using BERT in a multi-stage cascaded setting can
significantly boost retrieval accuracy while maintaining efficiency [Lin et al., 2021]. Yet
other studies have attempted to balance the effectiveness-efficiency tradeoff by proposing
dual-encoding architectures that are more efficient but usually less effective than cross-encoder
BERT models for information retrieval [Reimers and Gurevych, 2019, Humeau et al., 2020,
Karpukhin et al., 2020, Xiong et al., 2020, Khattab and Zaharia, 2020]. Our work builds
upon all of these important insights, which have been instrumental in scaling contextual
LMs to large-scale text ranking. As far as we are aware, we are the first to bridge these ideas
with the traditional graph learning task of link prediction.

A.2 Model selection

We implement all KG embeddings using the open-source LibKGE PyTorch library [Broscheit
et al., 2020]. We use the pretrained KGE checkpoints provided by LibKGE for FB15K-237
and WN18RR. For the other datasets, we follow a similar hyperparameter tuning strategy
to that proposed by Ruffinelli et al. [2020] for tuning our KGE baselines.

We implement all LMs with the Huggingface transformers PyTorch library [Wolf et al.,
2020] using the same base language model, which is BERT-Base [Devlin et al., 2019] for all
benchmarks except RepoDB, and PubMedBERT [Gu et al., 2021] for RepoDB. We use
the following hyperparameters: Batch size of 16, learning rate of 10−5, and 10 epochs. We
use a maximum sequence length of 32, 64, and 256 respectively for WN18RR, RepoDB,

17



Safavi, Downey, Hope

Inference time total

FB15K-237 20 hours
WN18RR 3.5 hours
CoDEx-S 26 min
CoDEx-M 17 hours
RepoDB 5 min

Table 6: Wall-clock inference time of CascadER using a single RTX 8000 GPU.

MRR H@1 H@3 H@10

RESCAL 0.4040 0.2935 0.4494 0.6225
TransE 0.3540 0.2185 0.4218 0.6335
ComplEx 0.4646 0.3714 0.5038 0.6455
RotatE 0.2587 0.1586 0.2916 0.4609

StAR 0.3540 0.2306 0.4051 0.6007
KG-BERT 0.2849 0.1472 0.3310 0.5848

KGE + KGE 0.4665 0.3712 0.5082 0.6518
KGE + StAR 0.4751 0.3717 0.5249 0.6712
KGE + KG-BERT 0.4812 0.3764 0.5290 0.6898

SOTA 0.4646 0.3714 0.5038 0.6455

CascadER 0.4839 0.3764 0.5383 0.6871

Table 7: CascadER achieves state-of-the-art test performance on CoDEx-S.
Bold + underline: Best performance. Underline: Second-best performance.

and all other datasets. For the dual-encoder LM we use 16 negative samples per positive.
For the cross-encoder LM we use 2 negative samples per positive.

For all of the ensemble baselines and CascadER, we tune the weighting hyperparameter
α ∈ [0.05, 0.95]. All experiments are conducted on a single NVIDIA Quadro RTX 8000 GPU
with 48 GB of RAM. All main results reported in the paper use a three-tiered structure with
no pruning between tiers one and two and dynamic pruning at q = 0.9 between tiers two
and three. We provide exact wall-clock inference time for CascadER in Table 6.

A.3 Additional results

Results on CoDEx-S Table 7 provides link prediction performance on the CoDEx-S
dataset [Safavi and Koutra, 2020]. CascadER again achieves state-of-the-art performance
on this dataset, suggesting its wide applicability across KGs.

Importance of additive reweighting Table 8 compares performance of a KGE + cross-
encoder ensemble with and without additive reweighting, as defined in Eq. (1). We observe
that MRR drops 6-8 points without the reweighting term, confirming that additive reweighting
is key to preserving the base models’ confidence signals in the ensemble.

18



CascadER: Cross-Modal Cascading for Knowledge Graph Link Prediction

No reweighting Reweighting

RepoDB 0.4498 0.5156
CoDEx-S 0.4204 0.4839
CoDEx-M 0.3114 0.3830

Table 8: Additive reweighting is crucial to ensembling KGEs and LMs. We compare the
MRR of the best CascadER architecture with additive reweighting as defined in Eq (1) to
the best CascadER architecture without the reweighting term.
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