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Abstract

Recently there is an increasing scholarly interest in time-varying knowledge graphs, or
temporal knowledge graphs (TKG). Previous research suggests diverse approaches to TKG
reasoning that uses historical information. However, less attention has been given to the
hierarchies within such information at different timestamps. Given that TKG is a sequence
of knowledge graphs based on time, the chronology in the sequence derives hierarchies
between the graphs. Furthermore, each knowledge graph has its hierarchical level which may
differ from one another. To address these hierarchical characteristics in TKG, we propose
HyperVC, which utilizes hyperbolic space that better encodes the hierarchies than Euclidean
space. The chronological hierarchies between knowledge graphs at different timestamps are
represented by embedding the knowledge graphs as vectors in a common hyperbolic space.
Additionally, diverse hierarchical levels of knowledge graphs are represented by adjusting
the curvatures of hyperbolic embeddings of their entities and relations. Experiments on
four benchmark datasets show substantial improvements, especially on the datasets with
higher hierarchical levels.

1. Introduction

Knowledge graphs (KGs) have been the backbone of many knowledge-driven AI applications
[Zhang et al., 2016, Wang et al., 2018, Liu et al., 2018, Huang et al., 2019], where factual
knowledge about the real world are described as graphs of entities (nodes) and relations
(edges). Yet, facts in real-world are varying over time instead of being persistently unchanged.
For example, ⟨JoeBiden, IsPresidentOf,U.S.⟩ has been true only for a year-long time, since
January 20th, 2021. We do not know when this fact will turn to false–he may run for another
presidential term, or he may not–but we know that this will eventually turn to false at some
time. Hence, it is meaningful to represent such facts that are dynamically changing over
time using a temporal knowledge graph (TKG) in the form of ⟨subject, relation, object, time⟩.
TKG representation has numerous downstream applications including event prediction [Luo
et al., 2020, Deng et al., 2020], transaction recommendation [Ren et al., 2019] and schema
induction [Zhang et al., 2020].
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The main purpose of TKG reasoning is to forecast future events or facts [Jin et al., 2020,
Zhu et al., 2021, Trivedi et al., 2017, 2019]. To precisely define the task, consider a TKG
where events lie in a temporal interval [t0, tT ]. Instead of predicting events at timestamps
t ∈ [t0, tT ], this task, also known as extrapolation, aims to predict new facts at a timestamp
t > tT . To tackle this task, recent studies have proposed several approaches [Jin et al., 2020,
Zhu et al., 2021, He et al., 2021]. Jin et al. [2020] proposed an autoregressive approach
while Zhu et al. [2021] utilized the copy-generation mechanism. He et al. [2021] focused
on both structural and temporal perspectives. However, there are still a few uncovered
challenges. Given that a TKG is a time series of KGs, it is natural that hierarchies can be
chronologically derived from TKGs. In particular, one event may evolve into several relevant
subevents [Surís et al., 2021], forming hierarchies that represent different paths of evolution
among KGs. Little attention has been given to incorporating such hierarchical structures in
previous research. Moreover, each KG at one timestamp has different numbers of entities
and relations, hence different characteristics as a graph. Note that the characteristics of
two graphs at contiguous timestamps are relatively similar compared to those of two graphs
at distant timestamps. Previous studies encoded entities and relations in the Euclidean
space, which can not fully address optimizing embedding space for each KG of various graph
structures. Hyperbolic spaces, often considered as a continuous version of trees, are more
advantageous to Euclidean spaces in encoding asymmetric and hierarchical relations [Chami
et al., 2019b, Liu et al., 2019]. The curvature of hyperbolic space decides the expanding ratio
of the space that fits data structures with a certain exponential factor.

To represent hierarchical and chronological properties of events in the TKG, we propose
HyperVC (Hyperbolic model with Variable Curvature), a TKG embedding model in the
hyperbolic space instead of a Euclidean spaces. HyperVC utilizes hyperbolic spaces in two
ways in representations of global information and local information, respectively, of each
snapshot of TKG. Global representation summarizes global information of a KG at one
timestamp. To represent hierarchical structures among snapshots, all global representations
are embedded in the common hyperbolic space. On the other hand, local representations
focus on local information such as an entity or an entity-relation pair. To improve the
optimization of the embedding space for each snapshot, HyperVC gives a variety in the
curvature of the embedding space of each snapshot to optimize the embedding spaces that
represent KGs of various structures. In other words, distinct structures of KGs are embedded
in hyperbolic spaces with different curvatures. Specifically, it is natural for hyperbolic KG
embedding models to efficiently represent KGs where the curvature of embedding space was
proportional to how hierarchical the graph is [Balazevic et al., 2019, Chami et al., 2020].
In particular, their analyses with Krackhardt hierarchical scores [Krackhardt, 2014] show
that the greater the hierarchical score of the data, the better performance at hyperbolic
embedding the data showed. Hence, by controlling the curvatures of the embedding space,
each embedding space of multiple graphs with different hierarchies can be optimized.

HyperVC finds a joint probability distribution of all events in TKG in an autoregressive
way, inspired by Jin et al. [2020]. Specifically, to learn global and local representations
in hyperbolic spaces, HyperVC aggregates the information in the neighborhood using GAT
[Veličković et al., 2018], encodes facts using hyperbolic RNN [Ganea et al., 2018a], and
decodes as a joint probability distribution of facts. Finally, we infer a curvature of embedding
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space in future timestamps using a time series model and predict upcoming events using
representations of information of graph at hyperbolic space with inferred curvature.

The technical contributions of this work are as follows: (1) HyperVC is the first hyper-
bolic TKG reasoning method that tackles extrapolation task forecasting future events. (2)
Specifically, our method addresses a hierarchy between graphs at different timestamps, which
is derived from chronology, and employs it through hyperbolic embedding. (3) Furthermore,
HyperVC applies hyperbolic RNN to deal with representations in hyperbolic spaces and
optimizes the curvatures at each timestamp as time series or functions of the hierarchical
scores. (4) HyperVC shows a significant improvement in TKG link prediction task, particularly
in data with more hierarchical relations.

2. Related Works

Temporal KG reasoning As discussed by Jin et al. [2020], temporal KG reasoning can
be divided into two task settings that aim at predicting facts that are positioned differently
on the timeline. In the interpolation setting, the models [Jiang et al., 2016, Sadeghian
et al., 2016, Dasgupta et al., 2018, García-Durán et al., 2018, Leblay and Chekol, 2018,
Goel et al., 2020, Montella et al., 2021] infer missing facts at the historical timestamps. To
do so, Dasgupta et al. [2018] projected the entities and relations onto timestamp-specific
hyperplanes. Leblay and Chekol [2018] and García-Durán et al. [2018] considered the time
as a second relation and integrated times with relations.

On the other hand, in the extrapolation setting, the models [Jin et al., 2020, Zhu et al.,
2021, Li et al., 2021a,b, He et al., 2021, Zhou et al., 2021, Sun et al., 2021, Han et al.,
2021] seek to forecast events at unseen (future) timestamp. Jin et al. [2020] defined a
joint probability distribution of all facts in an autoregressive function and Zhu et al. [2021]
developed a time-aware copy-generation mechanism and applied it in TKG embedding. Li
et al. [2021a] and Li et al. [2021b] utilized graph convolutional networks (GCN) to capture
structural dependencies between KGs in adjacent timestamps and He et al. [2021] further
considered repetitive perspective of relations. Zhou et al. [2021] proposed a framework that
is compatible with most sequence models. Sun et al. [2021] proposed a TKG reasoning model
that can handle unseen entities and Han et al. [2021] implemented neural ordinary differential
equations to forecast future links on TKGs.
Hyperbolic representation learning Data with hierarchical structures can be better
represented in the negative-curved hyperbolic space. Theoretically, this is because the
circumference of a hyperbolic space grows exponentially with the radius, which aligns with
the size growth of hierarchical data that is also exponential with regard to the level of
hierarchies. Existing works also support this: Nickel and Kiela [2017] proposed a Riemannian
optimization method to learn hyperbolic embeddings supervisedly, and Ganea et al. [2018a]
extended neural network operations in the hyperbolic space. Hyperbolic operations in Graph
Neural Networks (GNN) using intermediate Euclidean tangent space with differentiable
exponential and logarithmic mapping are derived by Liu et al. [2019] and Chami et al.
[2019b]. Dai et al. [2021] and Zhang et al. [2021] further introduced a hyperbolic GCN
that less relied on Euclidean tangent space. Hyperbolic representation learning has been
applied to tasks such as knowledge graph completion [Wang et al., 2021, Balazevic et al.,
2019], taxonomy expansion [Ma et al., 2021], organizational chart induction [Chen and Quirk,
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2019], event prediction [Surís et al., 2021], classification [López and Strube, 2020, Chen et al.,
2020] and knowledge association [Sun et al., 2020]. Most related to our work, Han et al.
[2020] proposed DyERNIE to use hyperbolic embeddings to capture geometric features of
TKGs. Montella et al. [2021] extended the DyERNIE work and defined the curvature of a
Riemannian manifold as the product of both relation and time and shows the helpfulness of
the adaptive curvature defined by relations.

While the two hyperbolic TKG embedding methods tackled the interpolation task, our
proposed method tackles the extrapolation task of forecasting future events based on the
past. In addition to the differences in the targeted tasks, our method is distinctive from
the two earlier methods in terms of model setting and definition. Specifically, in Han et al.
[2020], the entity representations are set to be “linear” to the time and curvatures are fixed
over time. However, HyperVC optimizes the entity representations through an auto-regressive
way and finds the best curvature at each timestamp. Additionally, Montella et al. [2021]
defined the curvature of the Riemannian manifold as a product of two parameters, i.e., the
relation-dependent parameter and the time-dependent parameter. While their method may
struggle in finding the time-dependent parameter for the future (unseen) timestamp, our
method applies to forecasting the future because we train the curvature as a function of
times and Krackhardt hierarchical scores.

3. Hyperbolic Spaces

General property A hyperbolic space is a Riemannian space with constant negative
curvature, whereas the curvature of a Euclidean space is constantly zero and that of a Spherical
space is constantly positive [Iversen and Birger, 1992]. The curvature of a Riemannian space
characterizes how the space is locally structured. Particularly, a negative curvature indicates
that the volumes grow faster than in the Euclidean space [Cannon et al., 1997].
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Figure 1: Bd
c is a Poincaré ball model (inside

of purple ball) that are embedded
in Rd+1 with x0 = 0 and Ld

c is a
Lorentz hyperboloid model (green
hyperboloid) of hyperbolic space.

Two models of hyperbolic spaces Sev-
eral models describe hyperbolic spaces [Bel-
trami, 1868, Cannon et al., 1997] and we
introduce two models here: the Poincaré
ball model and the Lorentz hyperboloid
model. The Poincaré ball model, or sim-
ply Poincaré model, with curvature c < 0, is
a d-dimensional ball Bd

c = {x ∈ Rd | ∥x∥2 <
−1/c}. The Lorentz hyperboloid model (sim-
ply Lorentz model) is another d-dimensional
hyperbolic space defined as Ld

c = {x =
(x0, · · · , xd) ∈ Rd+1| ⟨x,x⟩L = c, x0 > 0},
where c is the curvature. Hd

c denotes a d-
dimensional hyperbolic space of curvature c
regardless of models. See Figure 1.

Basic operations: addition and mul-
tiplication We introduce addition ⊕c and
multiplication ⊗c commonly used in neural
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networks on hyperbolic spaces. In the Poincaré model, we use Möbius addition and Möbius
matrix-vector multiplication. In the Lorentz model, addition and multiplication are performed
via the tangent space. For the details, see appendix A.1.
Hyperbolic RNN With the basic hyperbolic operations defined above, we introduce how
to generalize a Euclidean RNN to the hyperbolic space [Ganea et al., 2018b]. Traditional
RNN is defined as ht+1 = φ (Wht + Uxt + b) where φ is a pointwise non-linearity, ht is the
hidden state of previous unit, xt is the input, and W , U and b are model parameters on
Euclidean space E. Given Hc as the hyperbolic space modeled by a hyperbolic model (such
as Poincaré or Lorentz model) with curvature c, M as a manifold with a flat surface of a
certain point locally approximated by the Euclidean space E, we generalize it as follows:

ht+1 = φ⊗c (W ⊗c ht ⊕c U ⊗c xt ⊕c b)

where ht, xt, b ∈ Hc and W,U ∈ M. Note that the input embeddings are in the hyperbolic
space.

4. Method

In this section, we introduce our method HyperVC1.
Notations and problem definitions A TKG contains a set of quadraplets (s, r, o, t) ∈
F ⊂ E × R × E × T , where F , E , R, T are the set of valid facts, entities, relations, and
timestamps, respectively. Gt denotes the set of facts at timestamp t and thus a TKG can be
written as {Gt}t∈T . Our goal is to predict a probability p(s, r, o, t) for each triplet (s, rt, o)
of being contained in Gt. Note that among s, r, and o, only the relation r is a time-sensitive
variable. To do so, we first assume that Gt depends on previous m snapshot graphs G[t−m,t−1].
Inspired by Jin et al. [2020], we decompose the probability p

(
s, rt, o|G[t−m,t−1]

)
into:

p
(
s, rt, o|G[t−m,t−1]

)
= p

(
s|G[t−m,t−1]

)
· p

(
rt|s,G[t−m,t−1]

)
· p

(
o|s, rt, G[t−m,t−1]

)
. (1)

Namely, when we compute the probability of a triplet (s, rt, o), we first sample a subject
entity s using p

(
s|G[t−m,t−1]

)
. Next we calculate the probability p

(
rt|s,G[t−m,t−1]

)
of rt

given s and the previous m timestamps G[t−m,t−1]. Finally we compute the probability
p
(
o|s, rt, G[t−m,t−1]

)
of o given s, rt, and the previous events G[t−m,t−1].

In the prediction of a missing (future) temporal fact, we infer the missing object entity
given (s, r, ?, t) or the missing subject entity given (?, r, o, t). For the former case, the
prediction is based on the computation in Equation 1 of probability, and for the latter, we
compute the probability similarly as Equation 1 but sampling the object entity o first instead
of s.
Model components As shown in Figure 2, HyperVC implements global representations
and local representations, as in Jin et al. [2020], to find a joint probability distribution of
each event. The global representation Ht captures the global information of the snapshot
Gt at timestamp t, which describes preferences as a graph including trend or periodicity.
On the other hand, the local representation ht concentrates on local information such as a
vertex, an edge, or its neighborhood, thus representing more entity-specific or relation-specific

1. Codes are available at https://github.com/jhsohn11/HyperVC.
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Figure 2: The overall architecture of HyperVC. Colored boxes are the hyperbolic spaces that
contain the hyperbolic representations with designated curvatures. LSC w refers
to the linear softmax classifier parametrized by w. Through the cyan box of the
global representations, the green and yellow boxes of the local representations, and
the pink box of time-consistent hyperbolic embeddings of entities and relations,
we calculate the probability of triplet (s, r, o) at the timestamp t.

behaviors. The two representations capture disjoint features of TKGs. Therefore, we utilize
both representations to compute the probability distributions of events.

The key idea of HyperVC is that both representations Ht and ht are embedded in the
hyperbolic space, either with a Poincaré model, or a Lorentz model. We will compare the
performance of models embedded in these two hyperbolic spaces in the result part.

Global and local representations First of all, the global representations Ht, t ∈ T are all
embedded in one hyperbolic space Hd

c of dimension d with learnable curvature c of hyperbolic
space. This is because there is a hierarchy among contiguous snapshots of events derived
from chronological order. Specifically, relevant events (for example, events in causal relations)
branch into different paths of evolution depending on previously occurred events, and this
arises a hierarchy between KGs at neighboring timestamps [Surís et al., 2021]. Hence, we
embed the global representations into one common hyperbolic space with curvature c to
represent hierarchical structures between different snapshot graphs.

Moving on to the second representation, let ht(s) be the local representation in the
hyperbolic space Hd

ct of dimension d with curvature ct for a subject entity s and ht(s, r) ∈ Hd
ct

be the one for a pair of a subject entity s and a relation r. Unlike the global representation,
ht has curvatures ct that vary over timestamp t because each snapshot Gt has a different
hierarchical level. For example, one graph Gt1 at the timestamp t1 may have tree-like
(hierarchical) structures, which are represented better in hyperbolic space than Euclidean
space. For another graph Gt2 , they may have less hierarchical relations, whose embedding
fits better in Euclidean space. Because the hyperbolic space whose curvature is close to zero
is similar to Euclidean space, ct2 will be trained to be closer to zero than ct1 . In this way, we
can afford any graphs with diverse hierarchical levels by training the learnable curvature ct.
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These two separate but complementary representations are defined as:

Ht = hRNN(1)
(
T c

(
g′(Gt)

)
,Ht−1

)
,

ht(s) = hRNN(2)
(
T ct

(
g(N

(s)
t )

)
, T ct

c (Ht), T ct
ct−1

(ht−1(s))
)
,

ht(s, r) = hRNN(3)
(
T ct

(
g(N

(s)
t )

)
, T ct

c (Ht), T ct
ct−1

(ht−1(s, r))
)
,

where hRNN are the hyperbolic RNNs as described in Section 3 [Ganea et al., 2018a],
N

(s)
t is the subgraph of Gt that contains the entity s, g is the neighborhood aggregator

using graph attention [Veličković et al., 2018], and g′ is a max-pooling operation defined
as g′(Gt) = max

(
{g(N (s)

t )}s∈Gt

)
among the aggregated neighborhoods of whole entities

s in Gt. While the representations Ht−1 and Ht in hRNN(1) have the same curvature c,
representations in hRNN(2) and hRNN(3) have different curvatures. Hence, we adjust the
curvatures of Ht and ht−1 from c and ct−1 to ct through T ct

c and T ct
ct−1

, respectively. Finally,

as g(N
(s)
t ) and g′(Gt) are Euclidean vectors, we need a transition T ct of these vectors to the

hyperbolic space of curvature ct.
Computations of probabilities Based on both representations, we compute the probability
p(o|s, rt, G[t−m,t−1]) as follows:

p
(
o|s, rt, G[t−m,t−1]

)
= LSC

(
[es : ert : T −1

ct−1
(ht−1(s, rt))]

⊤ ·wo

)
,

where es, er ∈ Hd are learnable hyperbolic representations of the subject entity s and the
relation r, respectively, embedded in the hyperbolic space with fixed curvature −1. The
local representation ht−1(s, rt) collects the information of previous snapshots. However, since
ht−1 ∈ Hd

ct−1
while es, ert ∈ Hd

−1, we adjust the curvature of ht−1 from ct−1 to −1 through
T −1
ct−1

. HyperVC tracks and updates the semantic of (s, r) up to t by concatenating both static
representations es, er and the time-sensitive representation ht−1. Here, we concatenate
hyperbolic representations by appending one at the end of another. After the concatenation,
HyperVC computes the probability of the object entity o by passing a linear softmax classifier
LSC parametrized by wo.

Through the similar processes, we compute the two other probabilities p
(
s|G[t−m,t−1]

)
and p

(
rt|s,G[t−m,t−1]

)
as follows:

p
(
s|G[t−m,t−1]

)
= LSC

(
H⊤

t−1 ·ws

)
,

p
(
rt|s,G[t−m,t−1]

)
= LSC

(
[es : T −1

ct−1
(ht−1(s, rt))]

⊤ ·wrt

)
,

where the final probabilities are computed by passing a linear softmax classifier parametrized
by ws and wrt , respectively.
Learnable curvature Finally, we train the curvature ct as a function of two variables: times
and Krackhardt hierarchical scores. The real-world data such as daily data or weekly data
inevitably has a period. As the curvature of the snapshot at each timestamp is affected by
how the data look, there exists a seasonal component in the curvature as well. Inspired by
Xu et al. [2020], we decompose the curvature as an additive time series

ct = −σ (α sin(ωt) + (βt+ γ)) , (2)
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where each term refers to the seasonal component and the trend component. Since the
curvature of hyperbolic space is always negative, we take the “Softplus” function σ.

On the other hand, the Krackhardt hierarchical score (the formula is described in appendix
A.2) also affects the curvature of the hyperbolic space where the graph is embedded. Then
the curvature is represented as

ct = −σ(f(KhsGt)), (3)

where KhsGt is the Krackhardt hierarchical score of Gt. To find a function f that best
describes the relation between hierarchical score and curvature, we experimented with
polynomials: a linear function or a quadratic function.

Finally, we experimented with the combination of these two separate approaches as

ct = −σ (α sin(ωt) + (βt+ γ) + f(KhsGt)) . (4)

The results from these three different approaches were compared in the ablation study in the
later section.
Learning objective Given a subject s, a relation r, and a timestamp t, the model predicts the
object entity o based on the probability p(s, rt, o), considering it as a multi-class classification
task where each class corresponds to each entity. Then the loss function L is:

L = −
∑

(s,r,o,t)∈G

log p(o|s, rt) + λ log p(rt|s)

where G is a set of facts, and λ is a hyperparameter that controls each loss term. A similar
process works for the subject entity prediction with switched subject and object entities in
the loss function.
Inference HyperVC predicts future events based on past events. Here, we describe the
inference for a missing object, which applies to predicting a missing subject WLOG. Given s,
r, t, and the past history of snapshot graphs G[1:t], we predict the object o which has the
highest conditional probability. Inspired by Jin et al. [2020], we use multi-step inference
over time. HyperVC samples the events at the next timestamp based on the conditional
probability to build a sample graph and we use this in the inference of future timestamps.
In other words, from computing p(st+1, rt+1, ot+1|G[1,t]), or p(Gt+1|G[1,t]), we get a sample
Ĝt+1. Then we can further compute p(Gt+2|Ĝt+1, G[1,t]). Through the iterative computation
of conditional distribution and sampling from it, we get p(Gt+∆t|Ĝ[t+1,t+∆t−1], G[1,t]), the
estimate of p(Gt+∆t|G[1,t]).

5. Experiments

Experimental setup We use four representative TKGs datasets, GDELT [Leetaru and
Schrodt, 2013], ICEWS18 [Boschee et al., 2015], WIKI [Leblay and Chekol, 2018], and YAGO
[Mahdisoltani et al., 2014]. More details about the datasets can be found in Table 1 and
appendix A.3.

We split each dataset into three subsets by train, validation, test with the proportion
of approximately 80%, 10%, 10%, respectively, in chronological order. Note that three
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subsets contain disjoint timestamps. We report two evaluation metrics for extrapolated link
prediction, including Mean Reciprocal Rank (MRR) and H@1/3/10. MRR is the mean of
the inverse of ranks of test cases and H@1/3/10 are the proportions of test cases that are
ranked in the top 1/3/10, respectively. In the computation of ranks, we use the filtered
setting, i.e. we filter out the valid triplets that appeared in train, validation, and test sets
among candidates.

Dataset YAGO WIKI ICEWS18 GDELT
Entities 10,623 12,544 23,033 7,691

Relations 10 24 256 240
Training 161,540 539,286 373,018 1,734,399

Validation 19,523 67,538 45,995 238,765
Test 20,026 63,110 49,545 305,241

Time gap 1 year 1 year 1 day 15 mins
Timestamps 189 232 304 2,751
Hier. score 0.898 0.976 0.842 0.780

Table 1: Statistics of four datasets. The last row
gives the average of Krackhardt hierarchi-
cal scores for each dataset.

We compare our HyperVC to a di-
verse set of recent methods for reason-
ing on static KGs and temporal KGs.
Static KG embedding models include
TransE [Bordes et al., 2013], DistMult
[Yang et al., 2014], ComplEx [Trouillon
et al., 2016], ConvE [Dettmers et al.,
2018], RotatE [Sun et al., 2019], RGCN-
DistMult [Schlichtkrull et al., 2018], and
CompGCN-DistMult [Vashishth et al.,
2020]. For the static KG methods, we
simply remove all the timestamps in
datasets and compare the results. On the other hand, temporal KG embedding models
include TTransE [Jiang et al., 2016], HyTE [Dasgupta et al., 2018], TA-DistMult [García-
Durán et al., 2018], RE-Net [Jin et al., 2020], CyGNet [Zhu et al., 2021], SeDyT [Zhou et al.,
2021] and HIP Network [He et al., 2021]. For the other temporal KG embedding models such
as CluSTeR [Li et al., 2021a], RE-GCN [Li et al., 2021b], TimeTraveler [Sun et al., 2021],
and Tango [Han et al., 2021], they used time-aware evaluation metrics so direct comparison
was unavailable.
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Figure 3: Krackhardt hierarchical stores at
each timestamp. The x-axis is the
proportioned timestamps compared
to the entire dataset.

Results The hyperparameters were searched
based on the MRR performance of validation
sets. We used the Adam optimizer with a
learning rate of 0.001. The batch size was
1024, and the training epoch was (maximum)
100. The loss-controlling hyperparameter λ
was set to 0.01. The embedding dimension
was tuned among 100, 150, 200, and 300,
and the model with dimension 200 mostly
outperformed.

Table 2 reports the link prediction re-
sult by HyperVC and other methods on four
datasets. The baseline results are adopted
from Zhu et al. [2021], Zhou et al. [2021],
and He et al. [2021]. On the first two
datasets, HyperVC outperformed all the pre-
vious static and temporal KGs methods ex-
cept for HIP Network [He et al., 2021]. Espe-
cially, HyperVC outperformed the state-of-the-arts at H@1 on YAGO. In the WIKI, the most
hierarchical dataset among four TKG datasets, HyperVC relatively improved the performance
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YAGO WIKI ICEWS18 GDELT
Model MRR H@1 H@3 H@10 MRR H@1 H@3 H@10 MRR H@1 H@3 H@10 MRR H@1 H@3 H@10
TransE 48.97 46.23 62.45 66.05 46.68 36.19 49.71 51.71 17.56 2.48 26.95 43.87 16.05 0.00 26.10 42.29
DistMult 59.47 52.97 60.91 65.26 46.12 37.24 49.81 51.38 22.16 12.13 26.00 42.18 18.71 11.59 20.05 32.55
ComplEx 61.29 54.88 62.28 66.82 47.84 38.15 50.08 51.39 30.09 21.88 34.15 45.96 22.77 15.77 24.05 36.33
ConvE 62.32 56.19 63.97 65.60 47.57 38.76 50.10 50.53 36.67 28.51 39.80 50.69 35.99 27.05 39.32 49.44
RotatE 65.09 57.13 65.67 66.16 50.67 40.88 50.71 50.88 23.10 14.33 27.61 38.72 22.33 16.68 23.89 32.29
RGCN 41.30 32.56 44.44 52.68 37.57 28.15 39.66 41.90 23.19 16.36 25.34 36.48 23.31 17.24 24.96 34.36
CompGCN 41.42 32.63 44.59 52.81 37.64 28.33 39.87 42.03 23.31 16.52 25.37 36.61 23.46 16.65 25.54 34.58
TTransE 32.57 27.94 43.39 53.37 31.74 22.57 36.25 43.45 8.36 1.94 8.71 21.93 5.52 0.47 5.01 15.27
HyTE 23.16 12.85 45.74 51.94 43.02 34.29 45.12 49.49 7.31 3.10 7.50 14.95 6.37 0.00 6.72 18.63
TA-DistMult 61.72 52.98 63.32 65.19 48.09 38.71 49.51 51.70 28.53 20.30 31.57 44.96 29.35 22.11 31.56 41.39
RE-Net 65.16 63.29 65.63 68.08 51.97 48.01 52.07 53.91 42.93 36.19 45.47 55.80 40.42 32.43 43.30 53.70
CyGNet 63.47 64.26 65.71 68.95 45.50 50.48 50.79 52.80 46.69 40.58 49.82 57.14 50.92 44.53 54.69 60.99
SeDyT-CONV 66.88 −− 67.05 68.73 52.90 −− 52.96 54.00 45.91 −− 45.86 49.54 54.86 −− 54.68 58.14
HIP Network 67.55 66.32 68.49 70.37 54.71 53.82 54.73 56.46 48.37 43.51 51.32 58.49 52.76 46.35 55.31 61.87
HyperVC 67.52 66.46 67.52 69.28 53.02 51.98 53.36 54.55 41.38 34.21 44.25 55.17 40.08 32.98 42.84 53.26

Table 2: Performances (in percentage) at temporal link prediction task on four datasets.
The best results are boldfaced and the second best ones are underlined.

by (maximum) 8.27% (H@1 on WIKI) when compared to RE-Net [Jin et al., 2020], which can
be considered as a Euclidean version of HyperVC. Our method showed great performances on
these datasets because, as we can see in Figure 3 and Table 1, YAGO and WIKI are highly
hierarchical data in general.

WIKI
Model MRR H@1 H@3 H@10
HyperVC 53.02 51.98 53.36 54.55
HIP w/o hist. module 48.25 39.17 50.36 52.11

Table 3: Comparison of HyperVC and HIP
Network (SoTA) without the his-
torical vocabulary module.

Experiments further revealed that our ap-
proach of implementing hyperbolic spaces
strengthened the performance on the datasets
with high hierarchical scores (i.e., WIKI, YAGO)
whereas, with the other two datasets that
have low hierarchical scores (i.e., GDELT and
ICEWS18), ours did not outperform the earlier
models. Notably, the biggest difference between SoTA (HIP Network [He et al., 2021]) and
ours is that the former deploys an additional module to deal with historical vocabulary while
ours does not. He et al. [2021] provided the performance scores without the historical vocab-
ulary module on WIKI, and the comparison showed that our model HyperVC outperformed
SoTA without the module (See Table 3). Furthermore, another model CyGNet [Zhu et al.,
2021] which had better performance than ours on the datasets with low hierarchical scores
also included a similar module that deals with historical vocabulary. Given this, we speculate
that the gap in the performance between ours and the earlier ones may be attributed to the
implementation of such historical vocabulary modules. In other words, adding a module of
historical vocabulary to our model may improve the performance on these datasets regardless
of hierarchical scores.

YAGO WIKI
Model MRR H@3 H@10 MRR H@3 H@10
HyperVC (P) 67.52 67.52 69.28 53.02 53.36 54.55
HyperVC (L) 66.91 67.15 68.62 52.10 52.45 53.90

Table 4: Comparison of HyperVC embedded in
Poincaré model and HyperVC embed-
ded in Lorentz model.

Table 4 reports the performances of meth-
ods that are embedded in two different
hyperbolic spaces: HyperVC (P) refers to
the one embedded in the Poincaré model
and HyperVC (L) is the one in the Lorentz
model. Generally, the model embedded
in the Poincaré model shows better perfor-
mance.
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Ablation study As we mentioned, we present an ablation study about the contribution of
time-varying curvature of graphs at single timestamps at local representation. We compare
four models with different functions that describe the curvature: a learnable constant function,
an additive time series as in Equation 2, a function of Krackhardt hierarchical scores as in
Equation 3, and a combination of two variables as in Equation 4.

YAGO
Model MRR H@1 H@3 H@10
HyperVC w/ learnable const. 67.49 66.46 67.49 69.12
HyperVC w/ time series 67.52 66.46 67.52 69.28
HyperVC w/ hierarchical score 67.49 65.89 67.11 68.61
HyperVC w/ both 66.79 65.57 67.10 68.54

WIKI
Model MRR H@1 H@3 H@10
HyperVC w/ learnable const. 53.02 51.98 53.36 54.55
HyperVC w/ time series 52.51 51.32 52.85 54.10
HyperVC w/ hierarchical score 51.97 50.83 52.30 53.83
HyperVC w/ both 52.16 51.27 52.23 53.68

Table 5: Results of models with different types
of learnable curvatures: a constant, a
time series, a function of Krackhardt
hierarchical scores, and a combina-
tion of a time series and hierarchical
scores.

From the results in Table 5, we observe
that the model with an additive time se-
ries outperformed the other three models on
YAGO dataset. The optimized global curva-
ture at YAGO is −2.367, which means the
global representation at each timestamp fits
better in the hyperbolic space than in Eu-
clidean space. Therefore, as we desired, the
hierarchies derived from chronological prop-
erties are well represented in the hyperbolic
space. On the other hand, the best local cur-
vature at YAGO follows the additive time
series model

ct = −σ [α ∗ t+ β ∗ sin(ω ∗ t)],

where σ is the “Softplus” function, α = −2.532 ∗ 10−2, β = −2.846 ∗ 10−2, ω = −6.796 ∗ 10−2.
As α is negative, the curvature gets close to zero as the time increases. Interestingly, the
performance got low when Krackhardt hierarchical scores were involved as an independent
variable of curvature.

However, as we see in the lower part of Table 5, the model with constant learnable
curvature performed better in WIKI. This is because WIKI has rather consistent hierarchical
structures compared to YAGO data. (See Figure 3.) Since the hierarchical score of WIKI
is steady, the implementing time series or function of the hierarchical score may result in
overfitting followed by lower performance.

6. Conclusion

In this paper, we proposed HyperVC to tackle the extrapolation task on TKG reasoning in
an autoregressive way. To address hierarchical relations within TKG, we relied on hyperbolic
space rather than Euclidean space in both global and local representations. The global
representation elaborates the hierarchies between knowledge graphs at different timestamps
while local representation captures diverse hierarchical levels of knowledge graphs through
the learnable curvature. According to the experimental results, HyperVC performs great in
the link prediction task on more hierarchical datasets.
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Appendix A. Appendix

A.1 Basic Operations: Addition and Multiplication

We first introduce basic addition and multiplication operations commonly used in neural
networks for both Poincaré and Lorentz models. Unlike in a Euclidean space, the addition
of two vertex vectors in hyperbolic space is different from axis-wise addition. In Poincaré
model, we use Möbius addition ⊕c for x,y ∈ B follows

x⊕c y :=
(1− 2cx · y − c∥y∥2)x+ (1 + c∥x∥2)y

1− 2cx · y + c2∥x∥2∥y∥2

for addition operation where · is the dot product of two vectors [Ungar, 2001, Ganea et al.,
2018b, Gülçehre et al., 2019]. Note that as c goes to 0, the Möbius addition converges to
normal addition in Euclidean space. For multiplication, Möbius matrix-vector multiplication
⊗c is defined as

M ⊗c x := (1/
√
c) tanh

(
∥Mx∥
∥x∥

tanh−1(
√
c∥x∥)

)
Mx

∥Mx∥
.

In the Lorentz model, we perform addition and multiplication via the tangent space.
The logarithmic operation transforms vectors from Ld

c to the Euclidean tangent space
TxLd

c associated with the point x ∈ Ld
c and exponential operation conducts the reversed

transformation [Ma et al., 2021]. Given c = −1/K(K > 0), ⟨., .⟩L as the Minkowski inner
product and dKL (x, y) =

√
K arcosh (−⟨x, y⟩L/K), they are defined as:

expKx (v) = cosh

(
∥v∥L√

K

)
x+

√
K sinh

(
∥v∥L√

K

)
v

∥v∥L
, logKx (y) = dKL (x, y)

y + 1
K ⟨x, y⟩Lx∥∥y + 1
K ⟨x, y⟩Lx

∥∥
L
.

Hence, we could define matrix addition and multiplication on the Lorentz model by setting
x to to the origin point o if PK

o→x(·) is the parallel transport from ToLd
c to TxLd

c [Chami
et al., 2019a]:

M ⊗K x := expKo
(
M logKo (x)

)
,x⊕K y := expKx

(
PK
o→x(y)

)
.

A.2 Krackhardt Hierarchical Scores

The Krackhardt hierarchical score measures how hierarchical the graph is as follows:

KhsG =

∑n
i,j=1Ri,j(1−Rj,i)∑n

i,j=1Ri,j
,

where R is the adjacency matrix, i.e. Ri,j = 1 if there is an edge from node i to j and 0
otherwise. For example, a graph full of symmetric relations has KhsG = 0 while a tree (a
graph with no symmetric relation) has Khs = 1. See Krackhardt [2014] for more details.
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A.3 TKGs Datasets

The first dataset is a part of the dataset Global Databases of Events, Language, and Tone,
or GDELT, and collected from 1/1/2018 to 1/31/2018 with a time interval of 15 minutes.
ICEWS18 is from daily-event-based TKG Integrated Crisis Early Warning System (ICEWS),
extracted from 1/1/2018 to 10/31/2018. The last two datasets are subsets of Wikipedia
history and YAGO3, respectively. They both contain temporal fact with time frames in the
form of (s, r, o, [ts, te]), where ts is the starting time and te is the ending time. Following
the prior works [Jin et al., 2020, Zhu et al., 2021], we divide the temporal facts (WIKI and
YAGO) into timestamps with a time interval of one year.
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