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Abstract
Large language models (LMs) have been shown to capture large amounts of relational

knowledge from the pre-training corpus. These models can be probed for this factual knowl-
edge by using cloze-style prompts as demonstrated on the LAMA benchmark. However,
recent studies have uncovered that results only perform well, because the models are good
at performing educated guesses or recalling facts from the training data. We present a novel
Wikidata-based benchmark dataset, KAMEL , for probing relational knowledge in LMs.
In contrast to previous datasets, it covers a broader range of knowledge, probes for single-,
and multi-token entities, and contains facts with literal values. Furthermore, the evaluation
procedure is more accurate, since the dataset contains alternative entity labels and deals
with higher-cardinality relations. Instead of performing the evaluation on masked language
models, we present results for a variety of recent causal LMs in a few-shot setting. We show
that indeed novel models perform very well on LAMA, achieving a promising F1-score of
52.90%, while only achieving 17.62% on KAMEL. Our analysis shows that even large lan-
guage models are far from being able to memorize all varieties of relational knowledge that
is usually stored knowledge graphs.

1. Introduction

In recent years, researchers have started exploring the capabilities of LMs to store relational
knowledge. The seminal paper, Language Models as Knowledge Bases? has shown that
pre-trained LMs can be probed for a factual triple, e.g. (Paris, capital, France) by simply
transforming the triple into a cloze-style sentence: Paris is the capital of [MASK]. to
probe a masked LM like BERT and RoBERTa for relational knowledge typically stored
in large knowledge graphs [Petroni et al., 2019]. Most research focused on the T-REx
subset of the LAMA dataset consisting of 41 Wikidata relations. The best model in the
seminal paper (BERT-large) achieved a P@1 of 32.3% in completing the cloze-style sentences
on LAMA. After the publication of the original benchmark dataset, a variety of domain-
specific knowledge probing datasets like BioLAMA [Sung et al., 2021], MedLAMA [Meng
et al., 2022], and KMIR [Gao et al., 2022] have been published. They show that there
is a large interest in exploring how much relational knowledge is stored in pre-trained
LMs. Recently, also the idea of knowledge base completion with pre-trained LMs has been
investigated [Alivanistos et al., 2022, Li et al., 2022].

Since the quality of the model’s predictions strongly depends on the cloze-style prompt
that was manually defined for the LAMA dataset, different techniques for automatic prompt
learning [Jiang et al., 2020, Bouraoui et al., 2020, Shin et al., 2020, Zhong et al., 2021] or
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fine-tuning [Fichtel et al., 2021] were proposed. Given an additional training dataset with
triples, these techniques can improve the performance on LAMA to 48.6% [Zhong et al.,
2021]. However, two recent papers have shown that the actual performance of the LMs on
LAMA is mostly due to educated guessing [Cao et al., 2021] and due to recalling knowledge
from the training dataset [Zhong et al., 2021]. Even randomly initialized models can get a
very high precision on the test dataset by memorizing the training dataset. Also, no official
training dataset which can be used to optimize prompts is available, so people relied on the
dataset provided by Shin et al. [Shin et al., 2020].

LAMA is mostly evaluated only with masked LMs, even though the original paper also
evaluated a couple of other kinds of models. Evaluating causal LMs is problematic since no
standard evaluation routine exists that has shown good performance. To overcome exist-
ing limitations of LAMA and to enable probing of causal LMs with typical Wikidata-like
knowledge, we present a new dataset: KAMEL . KAMEL comprises knowledge about
234 relations from Wikidata with a large training, validation, and test dataset. We make
sure that all facts are also present in Wikipedia so that they have been seen during the
pre-training procedure of the LMs we are probing. Most importantly we overcome the
limitations of existing probing datasets by (1) having a larger variety of knowledge graph
relations, (2) it contains single- and multi-token entities, (3) we use relations with literals,
and (4) have alternative labels for entities. (5) Furthermore, we created an evaluation pro-
cedure for higher cardinality relations, which was missing in previous works, and (6) make
sure that the dataset can be used for causal LMs.

We evaluate how a large variety of causal LMs: GPT2-XL, OPT-1.3b, OPT-6.7b, OPT-
13b, and GPT-J-6b. We show that, as suspected, the results on the original LAMA bench-
mark overestimate the performance of LMs for Wikipedia-like knowledge by comparing the
results from LAMA to the results on our KAMEL dataset. While state-of-the-art mod-
els achieve an F1 score of more than 50% on LAMA, these models only achieve 17.7% on
KAMEL. Furthermore, the results on KAMEL strongly vary between different types of re-
lations. While for some relations, we achieve an F1-score of 93.00%, others end up with only
0%. Our dataset, the evaluation scripts, and the scripts for dataset creation are available
on GitHub1

2. Related Work

Recent works have shown that LMs contain relational knowledge as contained in knowledge
graphs [Petroni et al., 2019, Roberts et al., 2020]. The idea by Petroni et al. is to probe
a masked LM for triples/facts from a knowledge graph as follows: The triple (Barack
Obama, speaksLanguage, English) can be translated into the sentence Barack Obama can
speak [MASK]. The goal is to complete the triple, given the subject entity (Barack Obama)
and the relation (speaksLanguage) by predicting a single object entity. When prompting
the masked LM with the masked sentence, it is returning an ordered list of (single token)
words. If the top prediction is English, we assume that the LM knows the respective fact.
When the model, however, predicts Indonesian, the model’s predictions would be counted
as incorrect, even though Obama actually speaks both languages as stated in Wikidata. The
research on probing LMs for factual knowledge has sparked further research investigating

1. https://github.com/JanKalo/KAMEL
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how relational knowledge can be extracted from large LMs [Safavi and Koutra, 2021] and
how this knowledge can be used to support knowledge graphs [Razniewski et al., 2021].

The original LAMA Dataset The first dataset for knowledge analysis in LMs was
LAMA [Petroni et al., 2019]. LAMA consists of three subsets: (1) facts from GoogleRE,
(2) T-REx, and (3) ConceptNet. However, most follow-up works focused on the T-REx
probing subset with 41 Wikidata relations with at most 1000 triples per relation. The object
of these triples (the answers) consists of a single token in the vocabulary of the used LMs.
Hence, the comparison between different models is usually difficult and requires intersecting
vocabularies from different models to achieve comparable results. LAMA comprises 1-
1, 1-n, and n-m relations and usually uses averaged Precision@k as a metric. Follow-up
papers usually only report Precision@1. While the original LAMA paper only created a
test dataset, follow-up papers have suggested different training datasets that could be used
to develop better methods for prompting LMs (c.f. the next paragraph). The most used
training dataset has been created by Shin et al. [Shin et al., 2020]. This dataset contains
at most 1000 triples per relation from Wikidata triples. Even though the prediction quality
of LMs to complete knowledge graph triples seem to be very promising, recent findings
have shown that many improvements might come from memorization from this training
dataset [Cao et al., 2021, Zhong et al., 2021]. Zhong et al. have pointed out, that the
distributions of LAMA and the training set are highly skewed [Zhong et al., 2021]. Even
a simple baseline that always predicts the majority entity label from the training data can
already achieve an accuracy of 17.3%. Also randomly initialized LMs can already achieve
21% accuracy if fine-tuned on the training data. These critical results show that it is still
unclear how much factual knowledge is actually contained in pre-trained LMs. Therefore,
we aim at overcoming the limitations of LAMA to better investigate the question of whether
LMs could serve as knowledge graphs.

Other Existing Benchmark Datasets A more difficult version of LAMA is LAMA-
UHN [Poerner et al., 2019]. It removes simple triples where, e.g., nationality, can be guessed
from the person’s name with high probability. More recently, also domain specific probing
datasets for the biological(BioLAMA [Sung et al., 2021]) and medical(MedLAMA [Meng
et al., 2022]) domain have been created. TempLAMA is adding a factual domain to
facts [Dhingra et al., 2021]. Similar to our work, FewShot-LAMA evaluates the few-shot
capability of LMs by prompting the model with a couple of example prompts [He et al.,
2021]. A very recent benchmark dataset for probing language modes additionally checks
their knowledge reasoning capabilities on OWL-based axioms: KMIR [Gao et al., 2022].

Prompt Learning While the original LAMA paper used one single manually created
prompt template per relation, automatically learned prompts can improve the prediction
quality significantly. Early approaches worked on mining sentences from large text corpora
and weighting them based on training data [Bouraoui et al., 2020, Jiang et al., 2020]. The
predictions can even be further improved by learning the prompts through backpropagation
for creating a discrete prompt [Shin et al., 2020, Haviv et al., 2021]. More recent approaches
have learned only the embeddings instead of discrete prompts [Zhong et al., 2021, Qin and
Eisner, 2021] A different way to boost the quality of fact extraction from LMs is by providing
an additional context paragraph [Petroni et al., 2020]. Instead of learning the prompt from
training data, it is also possible to perform adaptive fine-tuning by continuing training with
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the pre-training objective on triple training data [Fichtel et al., 2021]. Instead of learning
prompts and predicting words as for the other probing approaches, in [Meng et al., 2022],
LM’s embeddings are used for probing.

Question Answering Probing a language model for factual knowledge is also related
to question answering. On the one hand, our work is related to knowledge graph ques-
tion answering (KGQA). Its goal is to answer natural language questions from a structured
knowledge graph[Cao et al., 2022]. While it has some similarities with our task (answering
natural language questions about knowledge graph facts), KGQA is mostly about translat-
ing natural language queries into a structured query language, e.g., SPARQL.

Closed-book question answering[Roberts et al., 2020] is about answering natural lan-
guage questions directly from a fine-tuned language model without using any external data
source. This is pretty similar to probing a language model for knowledge graph facts, how-
ever, the goal is different. We think that there is more value to probing a language model
for relational knowledge than just evaluating a downstream task like question answering
because it actually gives the possibility to compare language models and knowledge graphs
tasks independently. The insights from this analysis help understand how far LM and KG
can complement each other in a variety of downstream tasks. The insights from this work
therefore can be applied to a variety of tasks, e.g., question answering, knowledge base
completion, knowledge base error detection, and relation extraction.

3. Creating the Probing Dataset and Evaluating Causal Language Models

The basic idea of this work is to create and evaluate a new dataset to probe relational world
knowledge in large LMs. We focus particularly on causal models which have gained more
attention than masked models over the previous years. One basic requirement for probing
relational knowledge was that we only probe facts that the LMs could have seen during the
pre-training phase. Thus, our goal was to only use facts that we know have been mentioned
in Wikipedia, a corpus that is part of most training corpora. With a similar idea in mind,
the LAMA dataset was based on T-REx [Elsahar et al., 2018], a distantly supervised dataset
between Wikidata and Wikipedia. Unfortunately, T-REx has a rather low quality, due to
the low entity extraction quality of the tool DBpedia Spotlight.

3.1 Dataset Creation

To overcome this drawback, we decided to use a novel tool for annotating large text corpora
with Wikidata triples as presented in [Huguet Cabot and Navigli, 2021]: The cRocoDiLe
tool uses entity annotations based on Wikipedia hyperlinks, is also distantly supervised,
but additionally uses a textual entailment step to filter out distant supervision noise and
improve the overall quality. Furthermore, we extended the original corpus which was used
only on Wikipedia abstracts to the complete English Wikipedia from the Wikipedia version
of 2022-03-21. For Wikidata entity linking we use the dump from 2021-12-11. Overall,
this procedure leads to 9,872,196 distinct triples and 1493 different Wikidata relations. In
contrast, T-REx contains only 371 relations with overall 382,900 distinct triples.

Since we want to provide a difficult probe, we remove those triples where the full object
entity label is contained in the subject label. To assure this, n-grams., n-1-grams, ..., 1-
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grams of the subject labels are created where n is the number of words in the object label.
E.g. the triple (irrational number, opposite of, rational number) is not filtered out because
the object label has two words, n = 2, and the 2-grams and 1-grams of the subject are:
[irrational number; irrational; number]. Hence, the object label rational number is a subset
of the subject label irrational number, but not part of the list of n-grams, so the triple is not
removed from our dataset. Whereas the triple (Kenya national rugby league team; sport;
rugby league) is removed because the object rugby league is in the list of n-grams and it
would be too easy for an LM to predict this.

Furthermore, we manually removed the relations that were not suitable for the task.
(1) Relations with literals that are no single integers. All date relations were transformed
into years only. If a relation can be expressed in multiple formats and is ambiguous without
a metric, we removed it from the dataset as well. (2) We also removed relations about Wiki-
data meta information, (3) relations that are hard to interpret without using its Wikidata
qualifiers, and (4) relations that are unsuitable for LM probing since they are too general
concepts. A complete list of relations that were removed manually by us and the reasons
can be found in the appendix in Table 5.

From the remaining triples of the filtered relations, we created queries consisting of
one subject and one relation. The answer consists of a set of object entities. For example,
considering the relation P1412(languages spoken, written, or signed) and the triples (Barack
Obama, P1412, English) and (Barack Obama, P1412, Indonesian), we create the query
(Barack Obama, P1412, ?). The answer is the set of objects: English, Indonesian.

We allow subject and object labels of arbitrary lengths. Furthermore, we do not only
use rdf:labels for each of the objects but add all alternative labels as well. When we query
the language model for What countries has Taylor Chorney played for?, the answer entity is
Q30. It has the rdf:label United States of America. But in Wikidata for Q30 also alternative
labels such as USA or the States are stored. Using also these alternative labels for evaluation
is necessary, because many language models actually predict USA, instead of the full name.
As an additional restriction, we only allow queries that have at most 10 different answer
entities. Longer answer sets are very rare but require significantly higher computational
costs when running the benchmark.

As a final step, we randomly sampled 1400 queries for each of the 234 remaining relations,
so that we could create a training set of size 1000, a validation set of size 200, and a test
set of size 200. Due to this random sampling, many facts that we probe are actually
about unknown entities, that, however, has an article in the English Wikipedia and are in
Wikidata.

Dataset KAMEL LAMA

Number of Queries 46800 31479
Number of Relations 234 41
Avg. Number of Tokens 4.86 1 (2.87)2

Avg. Number of Labels 3.19 1
Queries with Multiple Results 4296 1035
Literals yes no

Table 1: Overview of the differences between LAMA and the test set of KAMEL.
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Differences between LAMA and KAMEL KAMEL was designed to overcome several
limitations of LAMA. We shortly summarize the key statistics in Table 1. LAMA officially
only consists of a test set. Follow-up works have created their own development and training
datasets. KAMEL, however, provides all splits in an adequate size.

Furthermore, we cover a wider range of knowledge: 41 vs. 234 relations. KAMEL is
extracted from a larger dataset. Therefore it covers more triples per relation. It has a
substantial number of queries with multiple answers. We think that this is an important
requirement for comparing an LM and a KG. Furthermore, KAMEL uses multiple labels for
the entities to improve the evaluation quality. Furthermore, LAMA has only evaluated single
token entities. As previous research has shown that predicting entities with multiple tokens
is more difficult. These single token answers are from the intersection of the vocabularies of a
variety of LMs. Consequently, they all are very frequent words and therefore often common
entities that are easier to predict. For example, for most geographic relations in LAMA this
implies that solutions are often countries or large, well-known cities. Without restricting to
single-token entities, as in KAMEL, solutions can also be uncommon entities, e.g., smaller
villages or municipalities. Another important difference is that KAMEL contains number
literals and not only triples with entities.

3.2 Probing Causal Language Models

Previous work has mainly focused on probing masked LMs, whereas causal LMs have become
more popular most recently, these could hardly be probed for relational knowledge using
LAMA. Evaluation of masked LMs was rather simple since the LMs were only supposed
to predict a single token that was compared to the gold answer. If the top one prediction
matched, the triple was counted as correct.

Causal models for text generation can generate texts of arbitrary length. Hence, the
evaluation of long predictions is way more complex than for masked LMs. A straightforward
idea would be to generate text of a fixed length to answer a factual question. If all correct
answers are contained in the generated text, the recall would be 100%. An assessment of
the precision is rather difficult since the assessment of wrong answers in the generated text
is hard. To overcome this issue, we decided to only perform few-shot evaluations, where the
few-shot examples demonstrate how the output should be formatted.

Few-Shot Evaluation For each test triple, we randomly sampled k training triples of
the same relation and created prompts presenting how the answers should look like. As
an example, for the Wikidata relation P1412 (languages spoken, written or signed) and the
test query (Natalie Portman, P1412, ?), a 5-shot example could look as follows. We used
% as an end-of-sentence token and a semicolon to separate answers.

What languages does Barack Obama speak? English;Indonesian%
What languages does Albert Einstein speak? English;German%
What languages does Confucius speak? Old Chinese%
What languages does António Guterres speak? Portuguese;English;Spanish;French%
What languages does Chimamanda Ngozi Adichie speak? English;Igbo;Nigerian Pidgin%

What languages does Natalie Portman speak?

2. 1 when using the original LAMA evaluation. With the GPT2 tokenizer, as in our experiments, it is 2.87.
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From the prompt examples, the model learns how the answer should be formatted and
which end-of-sentence token to use. Hence, in the optimal case, it would generate the text
English;Spanish;Hebrew;Japanese;French%, leading to precision and recall of 100%. If
only a single example is provided, the model does not necessarily stick to the desired format
and might answer in a longer sentence, which we will need to consider when computing the
evaluation metrics.

Prompt Templates The prompts used throughout this paper have been manually cu-
rated by the authors and are available as supplemental material for further evaluations. We
have written exactly one single prompt per relation in our dataset, leading to 234 prompts,
and an additional single prompt for a relation in the LAMA dataset that is not part of
our dataset. All prompts are created as simple and short questions based informed by
Wikidata’s property descriptions and examples. For prompts asking for a timestamp, we
explicitly mention that we only want the year as an answer to simplify evaluation.

Evaluation Metrics Since every test instance can have up to 10 answers, we evaluate
precision, recall, and F1-measure for every single instance. Given a prediction of a model,
e.g., English; Spanish; French; Italian% for the Natalie Portman example from above,
we would perform a split on the prediction on semicolons. We remove all special characters
and then perform an exact match comparison of every single answer part to the gold dataset.
Since the prediction, in this case, contains 3 out of 5 results, and one incorrect prediction,
we achieve a precision of 75% and a recall of 60%. We make sure to not only compare
the original label of the gold entity but also all its alternative labels found on Wikidata.
Thus, we can prevent the LM to make correct predictions that are counted as incorrect. In
the case that generated text is not having the format taught in the few-shot examples, we
employ the same metric. For example, Natalie Portman speaks English and French. would
get precision and recall of 0%. However, in practice, these cases are extremely rare.

As the last step, we perform macro-averaging per relation and then average the relation’s
scores to get an overall performance score.

Even though, we strict the analysis in this work to few-shot prompting, we created a large
training and validation set that offers the possibility to also perform other kinds of evalua-
tions. In our opinion, it would be particularly interesting to extend recent prompt learning
techniques that have been built for LAMA to work on multi-token entities and higher car-
dinality relations so that they can be evaluated on our dataset as well.

4. Experiments

4.1 Experimental Setup

All our experiments have been performed on our newly created KAMEL dataset using 234
Wikidata relations with 200 instances per relation in the test set, 1000 in the training set,
and 200 in the validation set. However, we are not using the validation set in our work,
but only performing few-shot learning by taking the few-shot examples randomly from the
training set. Additionally, we use LAMA with the training dataset created by Shin et
al.([Shin et al., 2020]) as a comparison to our dataset. For all experiments, we have used

7



Kalo, Fichtel

1-shot 5-shot 10-shot

Model P R F1 P R F1 P R F1

GPT-J-6b 10.27% 10.20% 10.24% 16.22% 15.81% 16.01% 17.46% 17.13% 17.30%
GPT2-xl 7.11% 7.05% 7.08% 10.11% 10.00% 10.06% 11.10% 11.00% 11.05%
OPT-1.3b 7.02% 6.91% 6.97% 10.87% 10.61% 10.74% 11.50% 11.18% 11.34%
OPT-6.7b 10.19% 10.09% 10.14% 15.65% 15.20% 15.42% 16.67% 16.24% 16.45%
OPT-13b 10.96% 10.88% 10.92% 16.42% 16.22% 16.32% 17.76% 17.48% 17.62%

OPT-13b* 9.63% 9.55% 9.59% 14.72% 14.54% 14.63% 16.21% 15.96% 16.08%

Table 2: Overview of the result of all models and the different few-shot scenarios.
OPT-13b* only uses rdf:labels without alternative labels for comparison.

manually created prompts that were written by the authors of this paper. We created only
a single prompt per relation that was re-used for all experiments.

Our experiments comprise five different models from the GPT [Radford et al., 2019,
Wang and Komatsuzaki, 2021] and OPT [Zhang et al., 2022] group that were downloaded
from the Huggingface model hub. OPT-1.3b and GPT2-xl are the models with the smallest
parameter number having 1.5 and 1.3 billion parameters. GPT-J-6b and OPT-6.7b have
a similar number of parameters, namely 6.7 billion. OPT-13b is the biggest model in our
evaluation with 13 billion parameters. We evaluate them on our test set and calculate
precision, recall, and F1 score as explained in Section 3.

The reported numbers are from a single run only, however we choose new few shot exam-
ples for every single query instance, randomly. Thus, the standard deviation for averaged
scores per model are very low. Our investigation has shown that the standard deviations
are below 0.1% in F1-score.

4.2 Results

We first give an overview of the results of the different models and their performance in
different few-shot settings presented in Table 2. We first look at the performance of different
types of test triples. We analyze the performance for relations with different cardinality
and compare queries with literals in comparison to normal entities. Afterward, we have a
look at the top and worst-performing relations. Finally, we also present a short analysis of
the differences between the results on the LAMA dataset and on our dataset.

Overview Comparing the models performing at the different few-shot scenarios, GPT-
J-6b, and OPT-6.7b achieve similar results (c.f. Table 2). This is as expected since they
have a roughly equal parameter number. OPT-13b as the biggest model performs best,
but does not show a big difference to the results of e.g. GPT-J-6b with 10-shot: OPT-13b
achieves only an F1-score of 17.62% compared to 17.30%. Considering the poor results
of the smallest model of OPT, which reaches only 12.08% for the F1-score in the 10-shot
scenario, a minimum number of parameters is apparently important, so that a higher degree
of knowledge can be stored in the LM. However, in our experiments, a large number of
parameters does not necessarily correlate with better performance. Looking at the precision
and recall values, it is notable that they do not differ much. This is because most of the
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(a) (b)

Figure 1: (a) F1-scores for all models against cardinality of queries. (b) F1-scores for all
models split into entity and literal queries each

queries have cardinality 1 and therefore only a single answer. Hence, the precision and
recall per query are either 0 or 1.

The last row in the table depicts an OPT-13b run with 10 shots, only using rdf:labels
without alternative labels. OPT-13b* performs almost 10% (relative to OPT-13b) worse
than with alternative labels at 10-shot. This shows that indeed, using alternative labels is
giving us a more precise estimation of the knowledge in language models.

Query Cardinality In Figure 1a, we present the average F1 score for queries of different
answer sizes (cardinality) for the 5 models in the 10-shot setting. The general trend is that
all models perform best for queries with cardinality 1. This category is also dominating
our dataset, therefore the F1 scores for cardinality 1 are very close to the average scores
presented in Table 2. Queries with higher cardinality naturally become more difficult, which
is also reflected in the graph. While queries with cardinality 2 still have an F1 score above
5%, for higher cardinality the average F1 scores are between 1% and 5%. These queries
are most often answered incorrectly. One reason for that is that we take random few-shot
examples from the training set. These, however, often only comprise a single answer so the
model does not know that it is supposed to predict multiple answers. This problem could
be possibly prevented by a more elaborate prompt design, which however is not the focus
of this work.

Literals and Entities In Figure 1b, we compare the performance between queries that
have entities as an answer and queries that have numbers as an answer. The first observation
is that number queries seem to be significantly more difficult. While entity queries can be
answered with an F1 score above 10%, often even above 15%, number queries often only
have half the F1 score. Also within the number relations, the spectrum is large. Queries
for some relations can be answered rather well, achieving F1 scores between 10% and 20%.
This is either due to a very small number of possible answers, or the subject entity already
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ID Label F1

P4743 animal breed 93.00%
P30 continent 91.58%
P1412 languages spoken 56.41%
P17 country 55.12%

ID Label F1

P47 shares border with 0.00%
P570 date of death 0.00%
P1066 student of 0.00%
P569 date of birth 0.00%

Table 3: Performance of some best and worst relations with OPT-13b and 10-shots.

containing the correct number prediction 3. On the other hand, there are many relations
with numbers, where the F1 score is close to 0%. The year of birth or the year of death of
a person is almost always predicted incorrectly.

Detailed Analysis To get a better idea of how the performance is on different Wikidata
relations, we present some of the top relations measured by F1 score and some of the worst
performing relations in Table 3 4. The model achieves the best performance of over 90%
for the animal breed relations. This is due to data skewness in Wikidata and therefore
also in our dataset. Most animals with relation P4743 are racehorses, all having the same
breed Thoroughbred. Also, the other 3 relations in our list have very few possible object
labels each. Similar to the LAMA dataset, also KAMEL has many triples with the object
Antarctica for the relation continent, hence the high F1 score. Besides that, also many
geographic and language-specific relations have performed very well. This is a pattern that
was also already observed on LAMA.

Due to the relations that can easily be answered by just picking the most frequent label
from the training dataset. Such a simple baseline already achieves an F1 score of 9.7% in
our dataset.

A large number of relations are extremely difficult for the LMs and therefore only achieve
an F1 score of 0.00%. As an example, the relation shares border with, stating which mu-
nicipalities and countries share a border with each other. While this is rather simple for
countries, most test instances are about bordering municipalities, often very small ones.
Such niche knowledge is hardly present in any of the LMs even though these facts are part
of their training corpora.

As already mentioned before, relations to numbers, here years of birth and death, are
very difficult. For birth year, all models correctly predict a valid yea, consisting of 4 digits.
The predictions get better the bigger the model gets. However, the average difference over
all test instances for the birth year is 59 years for OPT-13b. For the death year this difference
is even 84 years. Also, the distribution of predictions for both varies significantly. For the
birth year, some predictions are only off a single year, others up to 433 years.

Comparison to LAMA As an additional analysis, we evaluate OPT-13b on LAMA
and compare the quality of the same subset of relations in KAMEL. This analysis does
not consider P530, since this property is not contained in KAMEL, because there were
not enough instances. For this experiment, we used the same evaluation procedure for

3. Such easy-to-answer queries are usually removed from our test dataset. Some exceptions, however, were
not covered by our removal heuristic

4. A detailed list of all relations can be found in the Appendix Table 6.
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1-shot 5-shot 10-shot
Dataset P R F1 P R F1 P R F1

LAMA 39.83% 39.83% 39.83% 50.18% 50.18% 50.18% 52.90% 52.90% 52.90%
KAMEL 16.21% 16.10% 16.15% 22.38% 22.01% 22.19% 24.28% 23.71% 23.99%

Table 4: Performance between 40 LAMA relations and the subset in KAMEL for OPT-13b.

LAMA as for KAMEL. Since LAMA always has a single correct answer per query, precision
and recall are always identical. The performance of OPT-13b on LAMA is 52.90% F1 in
the best setting with 10-shots (c.f.Table 4). This outperforms all approaches presented for
prompt learning on LAMA, even though they usually use around 1000 training examples per
relation, instead of only 10. The results on the subset of 40 relations on KAMEL are higher
than the average on the whole KAMEL, with an F1 score of 23.99%, but significantly lower
than for LAMA. Hence, KAMEL is significantly more difficult; also when only evaluating
the same relations as in LAMA.

5. Conclusions

We present KAMEL, a new dataset for probing LMs for relational knowledge, and a simple
method on how to probe causal LMs in a few-shot setting. Our new dataset overcomes a
variety of limitations of previous benchmark datasets and covers a significantly larger variety
of relations. Thus, we can better investigate the memorization of factual world knowledge
in pre-trained LMs. In extensive experiments, we show that indeed novel causal models
can achieve a very high precision on the LAMA dataset, but only a rather low precision
on our new dataset. Concretely, the best model has only achieved an F1 score of 17.62%
on KAMEL. While particularly geographic relations are usually memorized incredibly well,
knowledge graphs often contain lots of niche knowledge that cannot be recalled by the LM.
Also, numeric literals seem to be more difficult than predicting only entities. Overall, our
results show that even large recent language models are far from being able to serve as
knowledge graphs.

For future work, it would be interesting to look into improving the prompts to increase
the performance of models on KAMEL. Optimizing the few-shot examples could already give
higher F1 scores, and therefore more realistic numbers. Additionally, zero-shot evaluations
might be interesting, but so far have to lead to bad results for the small models that we
have evaluated. Also using the full training dataset to learn better prompts, similar to what
was done for the LAMA dataset, might be an interesting option that might increase the
model’s performance on our probing dataset. Additionally, we think that our dataset is a
prime candidate to further explore knowledge base completion tasks using LMs.
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Appendix A. Additional Results

A.1 Manually removed relations

Relation ID Relation Label Reason

P1269 facet of Wikidata meta-fact
P793 significant event requires qualifiers
P1352 ranking requires qualifiers
P609 terminus location requires qualifiers
P1343 described by source requires qualifiers
P2283 uses too general concept
P1889 different from most subjects and objects have the same label
P460 said to be the same most subjects and objects have the same label
P2257 event interval requires a metric
P2067 mass requires a metric
P2043 length requires a metric
P2046 area requires a metric

Table 5: Relations that were removed from the dataset manually and reasons for their
removal.

A.2 Detailed Results per Relation for OPT-13b

ID Label Precision Recall F1 %

P4743 animal breed 93.00% 93.00% 93.00 %
P541 office contested 92.50% 92.25% 92.37 %
P30 continent 92.00% 91.17% 91.58 %
P8875 indexed in bibliographic review 94.75% 84.77% 89.48 %
P105 taxon rank 88.50% 88.50% 88.50 %
P467 legislated by 81.00% 81.00% 81.00 %
P4884 court 80.00% 80.00% 80.00 %
P196 minor planet group 78.50% 77.00% 77.74 %
P37 official language 67.53% 62.88% 65.12 %
P103 native language 63.00% 62.50% 62.75 %
P1412 languages spoken, written or signed 57.42% 55.43% 56.41 %
P17 country 55.50% 54.75% 55.12 %
P765 surface played on 54.00% 53.25% 53.62 %
P414 stock exchange 54.00% 52.50% 53.24 %
P1103 number of platform tracks 51.00% 50.75% 50.87 %
P407 language of work or name 49.50% 48.42% 48.95 %
P412 voice type 49.50% 48.25% 48.87 %
P27 country of citizenship 46.50% 46.25% 46.37 %
P1435 heritage designation 45.50% 45.50% 45.50 %
P664 organizer 44.50% 44.00% 44.25 %
P2597 Gram staining 44.00% 44.00% 44.00 %
P172 ethnic group 42.25% 42.50% 42.37 %
P461 opposite of 42.50% 42.00% 42.25 %
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P6886 writing language 42.25% 40.75% 41.49 %
P364 original language of film or TV show 41.00% 41.00% 41.00 %
P1532 country for sport 40.50% 39.75% 40.12 %
P277 programming language 40.54% 37.17% 38.78 %
P1001 applies to jurisdiction 38.50% 38.25% 38.37 %
P641 sport 37.50% 37.50% 37.50 %
P991 successful candidate 37.50% 37.00% 37.25 %
P2094 competition class 38.00% 36.46% 37.21 %
P1971 number of children 37.00% 37.00% 37.00 %
P495 country of origin 37.00% 36.75% 36.87 %
P2348 time period 37.00% 36.00% 36.49 %
P7937 form of creative work 35.50% 35.50% 35.50 %
P2437 number of seasons 35.50% 35.25% 35.37 %
P7959 historic county 33.00% 33.00% 33.00 %
P306 operating system 34.43% 30.66% 32.44 %
P59 constellation 32.00% 32.00% 32.00 %
P5353 school district 31.50% 31.00% 31.25 %
P140 religion 31.00% 31.00% 31.00 %
P607 conflict 30.78% 30.14% 30.46 %
P126 maintained by 30.00% 30.00% 30.00 %
P1308 officeholder 30.50% 29.38% 29.93 %
P115 home venue 30.00% 29.67% 29.83 %
P183 endemic to 29.50% 29.50% 29.50 %
P1444 destination point 26.50% 26.50% 26.50 %
P2936 language used 22.78% 29.23% 25.61 %
P291 place of publication 25.50% 25.25% 25.37 %
P945 allegiance 24.00% 23.75% 23.87 %
P937 work location 24.10% 23.58% 23.84 %
P1877 after a work by 23.50% 23.50% 23.50 %
P241 military branch 23.50% 23.25% 23.37 %
P1350 number of matches played/races/starts 23.50% 21.42% 22.41 %
P186 made from material 22.75% 21.92% 22.33 %
P31 instance of 22.00% 22.00% 22.00 %
P1303 instrument 22.53% 19.31% 20.80 %
P118 league 21.00% 20.50% 20.75 %
P53 family 20.50% 20.25% 20.37 %
P1441 present in work 20.54% 18.17% 19.28 %
P2868 subject has role 19.42% 18.75% 19.08 %
P177 crosses 19.00% 19.00% 19.00 %
P159 headquarters location 18.50% 18.50% 18.50 %
P102 member of political party 18.25% 18.00% 18.12 %
P413 position played on team / speciality 18.00% 18.00% 18.00 %
P452 industry 18.00% 17.50% 17.75 %
P113 airline hub 18.00% 17.17% 17.57 %
P286 head coach 17.50% 17.50% 17.50 %
P611 religious order 17.50% 17.50% 17.50 %
P97 noble title 17.50% 17.50% 17.50 %
P1027 conferred by 18.00% 17.00% 17.49 %
P137 operator 17.00% 16.75% 16.87 %
P931 place served by transport hub 16.50% 16.50% 16.50 %
P3450 sports season of league or competition 16.50% 16.50% 16.50 %
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P141 IUCN conservation status 16.00% 16.00% 16.00 %
P400 platform 15.55% 16.05% 15.80 %
P1376 capital of 15.35% 15.42% 15.38 %
P176 manufacturer 15.00% 15.00% 15.00 %
P2341 indigenous to 14.68% 14.42% 14.55 %
P6 head of government 14.50% 14.50% 14.50 %
P156 followed by 14.50% 14.25% 14.37 %
P178 developer 14.25% 13.75% 14.00 %
P749 parent organization 14.12% 13.75% 13.93 %
P1427 start point 13.50% 13.50% 13.50 %
P3764 pole position 13.50% 13.50% 13.50 %
P1142 political ideology 13.42% 13.17% 13.29 %
P36 capital 13.00% 13.00% 13.00 %
P201 lake outflow 13.00% 13.00% 13.00 %
P921 main subject 13.00% 12.75% 12.87 %
P1050 medical condition 13.00% 12.75% 12.87 %
P276 location 13.00% 12.50% 12.75 %
P415 radio format 12.50% 12.50% 12.50 %
P20 place of death 12.50% 12.50% 12.50 %
P65 site of astronomical discovery 12.50% 12.50% 12.50 %
P206 located in or next to body of water 13.00% 11.83% 12.39 %
P840 narrative location 12.00% 12.00% 12.00 %
P410 military rank 12.00% 12.00% 12.00 %
P127 owned by 11.50% 11.50% 11.50 %
P1433 published in 11.50% 11.50% 11.50 %
P371 presenter 12.88% 10.34% 11.47 %
P170 creator 11.50% 10.75% 11.11 %
P4552 mountain range 11.00% 11.00% 11.00 %
P740 location of formation 11.00% 11.00% 11.00 %
P674 characters 8.37% 15.93% 10.97 %
P149 architectural style 11.00% 10.75% 10.87 %
P136 genre 11.00% 10.25% 10.61 %
P3018 located in protected area 10.50% 10.50% 10.50 %
P200 inflows 9.92% 10.50% 10.20 %
P1416 affiliation 10.00% 10.00% 10.00 %
P179 part of the series 10.00% 10.00% 10.00 %
P106 occupation 10.00% 9.42% 9.70 %
P135 movement 10.00% 9.33% 9.66 %
P800 notable work 10.47% 8.83% 9.58 %
P2632 place of detention 10.25% 8.29% 9.17 %
P708 diocese 9.00% 9.00% 9.00 %
P1132 number of participants 9.00% 9.00% 9.00 %
P123 publisher 9.00% 9.00% 9.00 %
P915 filming location 9.50% 8.50% 8.97 %
P449 original broadcaster 9.00% 8.75% 8.87 %
P3602 candidacy in election 8.52% 8.67% 8.59 %
P2416 sports discipline competed in 8.50% 8.50% 8.50 %
P1056 product or material produced 8.50% 8.50% 8.50 %
P1923 participating team 8.23% 8.56% 8.39 %
P551 residence 8.50% 7.92% 8.20 %
P1411 nominated for 9.29% 7.25% 8.14 %
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P7153 significant place 8.00% 8.00% 8.00 %
P750 distributed by 8.00% 8.00% 8.00 %
P131 located in the administrative territorial entity 7.75% 8.00% 7.87 %
P50 author 8.00% 7.75% 7.87 %
P703 found in taxon 7.46% 7.75% 7.60 %
P710 participant 6.80% 8.46% 7.54 %
P2522 victory 7.50% 7.25% 7.37 %
P272 production company 7.50% 7.25% 7.37 %
P61 discoverer or inventor 7.50% 7.25% 7.37 %
P6379 has works in the collection 6.94% 7.58% 7.25 %
P138 named after 7.25% 7.25% 7.25 %
P488 chairperson 7.50% 6.75% 7.11 %
P19 place of birth 7.00% 7.00% 7.00 %
P463 member of 7.50% 6.50% 6.96 %
P669 located on street 7.00% 6.75% 6.87 %
P112 founded by 7.00% 6.04% 6.49 %
P279 subclass of 6.25% 6.25% 6.25 %
P366 use 6.50% 6.00% 6.24 %
P361 part of 6.17% 6.25% 6.21 %
P39 position held 6.50% 5.75% 6.10 %
P155 follows 6.00% 6.00% 6.00 %
P427 taxonomic type 6.00% 6.00% 6.00 %
P647 drafted by 6.00% 6.00% 6.00 %
P585 point in time 6.00% 6.00% 6.00 %
P101 field of work 5.83% 5.92% 5.87 %
P195 collection 6.00% 5.75% 5.87 %
P610 highest point 5.50% 5.50% 5.50 %
P1113 number of episodes 5.50% 5.50% 5.50 %
P144 based on 5.50% 5.50% 5.50 %
P180 depicts 4.93% 5.67% 5.27 %
P466 occupant 6.25% 4.42% 5.18 %
P1366 replaced by 5.00% 5.00% 5.00 %
P287 designed by 5.00% 4.75% 4.87 %
P69 educated at 4.92% 4.29% 4.58 %
P509 cause of death 4.50% 4.50% 4.50 %
P1346 winner 4.50% 4.12% 4.30 %
P1344 participant in 3.72% 4.75% 4.18 %
P108 employer 5.07% 3.50% 4.14 %
P706 located in/on physical feature 4.00% 4.00% 4.00 %
P175 performer 4.00% 4.00% 4.00 %
P2031 work period (start) 4.00% 4.00% 4.00 %
P580 start time 4.00% 4.00% 4.00 %
P676 lyrics by 3.75% 3.50% 3.62 %
P2044 elevation above sea level 3.50% 3.50% 3.50 %
P88 commissioned by 3.50% 3.50% 3.50 %
P576 dissolved, abolished or demolished date 3.50% 3.50% 3.50 %
P2032 work period (end) 3.50% 3.50% 3.50 %
P87 librettist 3.50% 3.25% 3.37 %
P86 composer 3.50% 3.25% 3.37 %
P40 child 2.79% 2.85% 2.82 %
P2975 host 2.67% 2.75% 2.71 %
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P264 record label 3.00% 2.42% 2.68 %
P54 member of sports team 2.25% 2.95% 2.55 %
P355 subsidiary 2.47% 2.38% 2.42 %
P1192 connecting service 2.16% 2.50% 2.32 %
P451 unmarried partner 2.17% 2.00% 2.08 %
P119 place of burial 2.00% 2.00% 2.00 %
P571 inception 2.00% 2.00% 2.00 %
P582 end time 2.00% 2.00% 2.00 %
P22 father 2.00% 2.00% 2.00 %
P57 director 2.00% 2.00% 2.00 %
P1408 licensed to broadcast to 2.00% 2.00% 2.00 %
P559 terminus 1.75% 2.25% 1.97 %
P2789 connects with 1.76% 2.08% 1.91 %
P1365 replaces 2.00% 1.75% 1.87 %
P81 connecting line 2.00% 1.75% 1.87 %
P1830 owner of 1.49% 1.89% 1.67 %
P84 architect 1.50% 1.50% 1.50 %
P403 mouth of the watercourse 1.50% 1.50% 1.50 %
P171 parent taxon 1.50% 1.50% 1.50 %
P1101 floors above ground 1.50% 1.50% 1.50 %
P1082 population 1.50% 1.50% 1.50 %
P162 producer 1.50% 1.50% 1.50 %
P4908 season 1.50% 1.50% 1.50 %
P4647 location of first performance 1.50% 1.50% 1.50 %
P575 time of discovery or invention 1.50% 1.50% 1.50 %
P166 award received 1.18% 1.92% 1.46 %
P737 influenced by 1.14% 1.50% 1.30 %
P6087 coach of sports team 1.14% 1.42% 1.27 %
P58 screenwriter 1.25% 1.25% 1.25 %
P1598 consecrator 1.17% 1.17% 1.17 %
P150 contains administrative territorial entity 0.96% 1.09% 1.02 %
P25 mother 1.00% 1.00% 1.00 %
P606 first flight 1.00% 1.00% 1.00 %
P1619 date of official opening 1.00% 1.00% 1.00 %
P729 service entry 1.00% 1.00% 1.00 %
P577 publication date 1.00% 1.00% 1.00 %
P161 cast member 0.48% 1.39% 0.72 %
P1038 relative 0.54% 1.00% 0.70 %
P197 adjacent station 1.00% 0.50% 0.67 %
P3999 date of official closure 0.50% 0.50% 0.50 %
P619 UTC date of spacecraft launch 0.50% 0.50% 0.50 %
P344 director of photography 0.50% 0.50% 0.50 %
P802 student 0.50% 0.50% 0.50 %
P98 editor 0.50% 0.50% 0.50 %
P1327 partner in business or sport 0.50% 0.50% 0.50 %
P3373 sibling 0.50% 0.50% 0.50 %
P527 has part 0.40% 0.46% 0.43 %
P974 tributary 0.29% 0.75% 0.42 %
P190 twinned administrative body 0.25% 0.50% 0.33 %
P184 doctoral advisor 0.00% 0.00% 0.00 %
P26 spouse 0.00% 0.00% 0.00 %
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P185 doctoral student 0.00% 0.00% 0.00 %
P1249 time of earliest written record 0.00% 0.00% 0.00 %
P1191 date of first performance 0.00% 0.00% 0.00 %
P47 shares border with 0.00% 0.00% 0.00 %
P570 date of death 0.00% 0.00% 0.00 %
P1066 student of 0.00% 0.00% 0.00 %
P569 date of birth 0.00% 0.00% 0.00 %

Table 6: Detailed results for OPT-13b for all the properties in KAMEL ordered by F1 score.
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