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Abstract
Learning good representations on multi-relational graphs is essential to knowledge base comple-

tion (KBC). In this paper, we propose a new self-supervised training objective for multi-relational
graph representation learning, via simply incorporating relation prediction into the commonly used
1vsAll objective. The new training objective contains not only terms for predicting the subject
and object of a given triple, but also a term for predicting the relation type. We analyse how this
new objective impacts multi-relational learning in KBC: experiments on a variety of datasets and
models show that relation prediction can significantly improve entity ranking, the most widely
used evaluation task for KBC, yielding a 6.1% increase in MRR and 9.9% increase in Hits@1
on FB15k-237 as well as a 3.1% increase in MRR and 3.4% in Hits@1 on Aristo-v4. Moreover,
we observe that the proposed objective is especially effective on highly multi-relational datasets,
i.e. datasets with a large number of predicates, and generates better representations when larger
embedding sizes are used.

1. Introduction

Aiming at completing missing entries, Knowledge Base Completion (KBC), also known as Link
Prediction, plays a crucial role in constructing large-scale knowledge graphs [Nickel et al., 2016, Ji
et al., 2020, Li et al., 2020]. Over the past years, most of the research on KBC has been focusing on
Knowledge Graph Embedding models, which learn representations for all entities and relations in
a Knowledge Graph, and use them for scoring whether an edge exists or not [Nickel et al., 2016].
Numerous models and architectural innovations have been proposed in the literature, including but
not limited to translation-based models [Bordes et al., 2013], latent factorisation models [Nickel et al.,
2011, Trouillon et al., 2016, Balazevic et al., 2019], and neural network-based models [Dettmers
et al., 2018, Schlichtkrull et al., 2018, Xu et al., 2020].

Other more recent research has been making complementary efforts on analysing the evaluation
procedures for these KBC models. For instance, Sun et al. [2020] call for standardisation of evaluation
protocols; Kadlec et al. [2017], Ruffinelli et al. [2020] and Jain et al. [2020] highlight the importance
of training strategies and show that careful hyper-parameter tuning can produce more accurate results
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than adopting more elaborate model architectures; Lacroix et al. [2018] suggests that a simple model
can produce state-of-the-art results when its training objective is properly selected.

Taking inspiration from these findings, this paper explores relation prediction: a simple auxiliary
training objective that significantly improves multi-relational graph representation learning across
several KBC models. Aside from training models to predict the subject and object entities for triples
in a Knowledge Graph, we also train them to predict relation types, leading to a self-supervised
training objective. Intuitively, this approach is akin to using a masked language model-like training
objective [Devlin et al., 2019] instead of the commonly used auto-regressive training objective for
KBC. In our experiments, we find that the new auxiliary training objective significantly improves
downstream link prediction accuracy.

Empirical evaluations on various models and datasets support the effectiveness of our new
training objective: the largest improvements were observed on ComplEx-N3 [Trouillon et al., 2016]
and CP-N3 [Lacroix et al., 2018] with embedding sizes between 2K and 4K, providing up to 9.9%
boost in Hits@1 and 6.1% boost in MRR on FB15k-237 with negligible computational overhead.

We further experiment on datasets with varying numbers of predicates and find that relation
prediction helps more when the dataset is highly multi-relational, i.e. contains a larger number of
predicates. Moreover, our qualitative analysis demonstrates improved prediction of some MANY-TO-
MANY [Bordes et al., 2013] predicates and more diversified relation representations.

2. Background and Related Work

A Knowledge Graph G ⊆ E ×R×E contains a set of subject-predicate-object 〈s, p, o〉 triples, where
each triple represents a relationship of type p ∈ R between the subject s ∈ E and the object o ∈ E of
the triple. Here, E andR denote the set of all entities and relation types, respectively.

Knowledge Graph Embedding Models A Knowledge Graph Embedding (KGE) model, also
referred to as neural link predictor, is a differentiable model where entities in E and relation types
in R are represented in a continuous embedding space, and the likelihood of a link between two
entities is a function of their representations. More formally, KGE models are defined by a parametric
scoring function φθ : E ×R× E 7→ R, with parameters θ that, given a triple 〈s, p, o〉, produces the
likelihood that entities s and o are related by the relationship p.

Scoring Functions KGE models can be characterised by their scoring function φθ. For example, in
TransE [Bordes et al., 2013], the score of a triple 〈s, p, o〉 is given by φθ(s, p, o) = −‖s + p− o‖2,
where s,p,o ∈ Rk denote the embedding representations of s, p, and o, respectively. In Dist-
Mult [Yang et al., 2015], the scoring function is defined as φθ(s, p, o) = 〈s,p,o〉 =

∑k
i=1 sipioi,

where 〈 · , · , · 〉 denotes the tri-linear dot product. Canonical Tensor Decomposition [CP, Hitch-
cock, 1927] is similar to DistMult, with the difference that each entity x has two representa-
tions, xs ∈ Rk and xo ∈ Rk, depending on whether it is being used as a subject or object:
φθ(s, p, o) = 〈ss,p,oo〉. In RESCAL [Nickel et al., 2011], the scoring function is a bilinear model
given by φθ(s, p, o) = s>Po, where s,o ∈ Rk is the embedding representation of s and p, and
P ∈ Rk×k is the representation of p. Note that DistMult is equivalent to RESCAL if P is constrained
to be diagonal. Another variation of this model is ComplEx [Trouillon et al., 2016], where the
embedding representations of s, p, and o are complex vectors – i.e. s,p,o ∈ Ck – and the scoring
function is given by φθ(s, p, o) = <(〈s,p,o〉), where <(x) represents the real part of x, and x
denotes the complex conjugate of x. In TuckER [Balazevic et al., 2019], the scoring function is
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defined as φθ(s, p, o) = W ×1 s ×2 p ×3 o, where W ∈ Rks×kp×ko is a three-way tensor of
parameters, and s ∈ Rks , p ∈ Rkp , and o ∈ Rko are the embedding representations of s, p, and o. In
this work, we mainly focus on DistMult, CP, ComplEx, and TuckER, due to their effectiveness on
several link prediction benchmarks [Ruffinelli et al., 2020, Jain et al., 2020].

Training Objectives Another dimension for characterising KGE models is their training objective.
Early tensor factorisation models such as RESCAL and CP were trained to minimise the reconstruc-
tion error of the whole adjacency tensor [Nickel et al., 2011]. To scale to larger Knowledge Graphs,
subsequent approaches such as Bordes et al. [2013] and Yang et al. [2015] simplified the training
objective by using negative sampling: for each training triple, a corruption process generates a batch
of negative examples by corrupting the subject and object of the triple, and the model is trained by
increasing the score of the training triple while decreasing the score of its corruptions. This approach
was later extended by Dettmers et al. [2018] where, given a subject s and a predicate p, the task
of predicting the correct objects is cast as a |E|-dimensional multi-label classification task, where
each label corresponds to a distinct object and multiple labels can be assigned to the (s, p) pair. This
approach is referred to as KvsAll by Ruffinelli et al. [2020]. Another extension was proposed by
Lacroix et al. [2018] where, given a subject s and an object p, the task of predicting the correct object
o in the training triple is cast as a |E|-dimensional multi-class classification task, where each class
corresponds to a distinct object and only one class can be assigned to the (s, p) pair. This is referred
to as 1vsAll by Ruffinelli et al. [2020].

Note that, for factorisation-based models like DistMult, ComplEx, and CP, KvsAll and 1vsAll
objectives can be computed efficiently on GPUs [Lacroix et al., 2018, Jain et al., 2020]. For example
for DistMult, the score of all triples with subject s and predicate p can be computed via E(s� p),
where � denotes the element-wise product, and E ∈ R|E|×k is the entity embedding matrix. In this
work, we follow Lacroix et al. [2018] and adopt the 1vsAll loss, so as to be able to compare with
their results, and since Ruffinelli et al. [2020] showed that they produce similar results in terms of
downstream link prediction accuracy.

Recent work on standardised evaluation protocols for KBC models [Sun et al., 2020] and their
systematic evaluation [Kadlec et al., 2017, Mohamed et al., 2019, Jain et al., 2020, Ruffinelli et al.,
2020] shows that latent factorisation based models such as RESCAL, ComplEx, and CP are very
competitive when their hyper-parameters are tuned properly [Kadlec et al., 2017, Ruffinelli et al.,
2020]. In this work, we show that using relation prediction as an auxiliary training task can further
improve their downstream link prediction accuracy.

3. Relation Prediction as An Auxiliary Training Objective

In what is referred to as the 1vsAll setting [Ruffinelli et al., 2020], KBC models are trained using a
self-supervised training objective by maximising the conditional likelihood of the subject s (resp.
object o) of training triples, given the predicate and the object o (resp. subject s). More formally,
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KBC models are trained by maximising the following objective:

arg max
θ∈Θ

∑
〈s,p,o〉∈G

[logPθ(s | p, o) + logPθ(o | s, p)]

with logPθ(o | s, p) = φθ(s, p, o)− log
∑
o′∈E

exp
[
φθ(s, p, o

′)
]

logPθ(s | p, o) = φθ(s, p, o)− log
∑
s′∈E

exp
[
φθ(s

′, p, o)
]
,

(1)

where θ ∈ Θ are the model parameters, including entity and relation embeddings, and φθ is a scoring
function parameterised by θ. Such an objective limits predicting positions in the training objective to
either the first (s) or the last (o) element of the triple.

In this work, we propose relation prediction as an auxiliary task for training KBC models. The
new training objective not only contains terms for predicting the subject and the object of the triple
– logP (s | p, o) and logP (o | s, p) in Equation (1) – but also an objective logP (p | s, o) for
predicting the relation type p:

arg max
θ∈Θ

∑
〈s,p,o〉∈G

[logPθ(s | p, o) + logPθ(o | s, p) + λ logPθ(p | s, o)]

with logPθ(p | s, o) = φθ(s, p, o)− log
∑
p′∈R

exp
[
φθ(s, p

′, o)
]
,

(2)

where λ ∈ R+ is a user-specified hyper-parameter that determines the contribution of the relation
prediction objective; we assume λ = 1 unless specified otherwise. This new training objective adds
very little overhead to the training process, and can be easily added to existing KBC implementations;
PyTorch examples are included in Appendix A. Compared to conventional approaches, relation
prediction can help the model learn to further distinguish among different predicates.

4. Empirical Study

In this section, we conduct several experiments to verify the effectiveness of incorporating relation
prediction as an auxiliary training objective. We are interested in the following research questions:

RQ1: How does the new training objective impact the results of downstream knowledge base
completion tasks across different datasets? How does the number of relation types on the
datasets affect the new training objective?

RQ2: How does the new training objective impact different models? Does it benefit all the models
uniformly, or it particularly helps some of them?

RQ3: Does the new training objective produce better entity and relation representations?

Datasets We use Nations, UMLS, and Kinship from Kok and Domingos [2007], WN18RR [Dettmers
et al., 2018], and FB15k-237 [Toutanova et al., 2015], which are commonly used in the KBC liter-
ature. As these datasets contain a relatively small number of predicates, we also experiment with
Aristo-v4, the 4-th version of Aristo Tuple KB [Mishra et al., 2017], which has more than 1.6k
predicates. Since Aristo-v4 has no standardised splits for KBC, we randomly sample 20k triples for
test and 20k for validation. Table 1 summarises the statistics of these datasets.
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Dataset |E| |R| #Train #Validation #Test

Nations 14 55 1,592 100 301
UMLS 135 46 5,216 652 661

Kinship 104 25 8,544 1,068 1,074
WN18RR 40,943 11 86,835 3,034 3,134

FB15k-237 27,395 237 272,115 17,535 20,466
Aristo-v4 44,950 1,605 242,594 20,000 20,000

Table 1: Dataset statistics, where |E| and |R| indicate the numbers of entities and predicates.

Metrics Entity ranking is the most commonly used evaluation protocol for knowledge base com-
pletion. For a given query (s, p, ?) or (?, p, o), all the candidate entities are ranked based on the
scores produced by the models, and the resulting ordering is used to compute the rank of the true
answer. We use the standard filtered Mean Reciprocal Rank (MRR) and Hits@K (Hit ratios of the
top-K ranked results), with K ∈ {1, 3, 10}, as metrics.

Models We use several competitive and reproducible [Ruffinelli et al., 2020, Sun et al., 2020]
models: RESCAL [Nickel et al., 2011], ComplEx [Trouillon et al., 2016], CP [Lacroix et al., 2018],
and TuckER [Balazevic et al., 2019]. To ensure fairness in various comparisons, we did an extensive
tuning of hyper-parameters using the validation sets, which consists of 41,316 training runs in total.
For the main results on all the datasets, we tuned λ using grid-search. For the ablation experiments
on the number of predicates and for different choices of models, we set λ to 1 for simplicity. Details
regarding the hyper-parameter sweeps can be found in Appendix B.

4.1 RQ1: Impacts of Relation Prediction on Different Datasets

How does the proposed training objective impact knowledge base completion on different datasets?
To answer this research question, we compare the performance of training with relation prediction
and training without relation prediction on several popular KBC datasets. For the smaller datasets
(Kinship, Nations and UMLS), we selected the best one from RESCAL, ComplEx, CP, and TuckER.
For larger datasets (WN18RR, FB15k-237, and Aristo-v4), due to a limited computation budget, we
used ComplEx, which outperformed other models in our preliminary experiments.

Table 2 summarises the results on the smaller datasets, where" indicates training with relation
prediction while % indicates training without relation prediction. We can observe that relation
prediction brings a 2% – 4% improvement in MRR and Hits@1, as well as keeping a competitive
Hits@3 and Hits@10.

Table 3 summarises the results on the larger datasets. Including relation prediction as an auxiliary
training objective brings a consistent improvement on the 3 datasets with respect to all metrics,
except for Hits@10 on WN18RR. Particularly, relation prediction leads to increases of 6.1% in
MRR, 9.9% in Hits@1, 6.1% in Hits@3 on FB15k-237 and 3.1% in MRR, 3.4% in Hits@1, 3.8%
in Hits@3 on Aristo-v4. Compared to WN18RR, we observe a larger improvement on FB15k-237
and Aristo-v4. One potential reason is that on FB15k-237 there is a more diverse set of predicates
(|R| = 237) and Aristo-v4 (|R| = 1605) than in WN18RR (|R| = 11). The number of predicates
|R| on WN18RR is comparatively small, and the model gains more from distinguishing different
entities than distinguishing relations. In other words, using lower values for λ (the weight of the
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Dataset Entity Prediction Relation Prediction MRR Hits@1 Hits@3 Hits@10

Kinship % " 0.920 0.867 0.970 0.990
" % 0.897 0.835 0.955 0.987
" " 0.916 0.866 0.964 0.988

Nations % " 0.686 0.493 0.871 0.998
" % 0.813 0.701 0.915 1.000
" " 0.827 0.726 0.915 0.998

UMLS % " 0.863 0.795 0.914 0.979
" % 0.960 0.930 0.991 0.998
" " 0.971 0.954 0.986 0.997

Table 2: Test performance comparison on Kinship, Nations, and UMLS. We conducted an extensive
hyper-parameter search over 4 different models, namely RESCAL, ComplEx, CP, and
TuckER, where the model is also treated as a hyper-parameter. Including relation prediction
as an auxiliary training objective on these three datasets helps in terms of test MRR and
Hits@1, while keeping competitive test Hits@3 and Hits@10. More details on the hyper-
parameter selection process are available in Appendix B.1.1.

Dataset Entity Prediction Relation Prediction MRR Hits@1 Hits@3 Hits@10

WN18RR % " 0.258 0.212 0.290 0.339
" % 0.487 0.441 0.501 0.580
" " 0.488 0.443 0.505 0.578

FB15K-237 % " 0.263 0.187 0.287 0.411
" % 0.366 0.271 0.401 0.557
" " 0.388 0.298 0.425 0.568

Aristo-v4 % " 0.169 0.120 0.177 0.267
" % 0.301 0.232 0.324 0.438
" " 0.311 0.240 0.336 0.447

Table 3: Test performance comparison on WN18RR, FB15k-237, and Aristo-v4 using ComplEx.
Including relation prediction as an auxiliary training objective brings consistent improve-
ments across the three datasets on all metrics except Hits@10 on WN18RR. On FB15k-237
and Aristo-v4, adding relation prediction yields larger improvements in downstream link
prediction tasks. More details on the hyper-parameter selection process are available in
Appendix B.1.2.

relation prediction objective) is more suitable for datasets with fewer predicates but a large number
of entities. We include ablations on |R| in Section 4.1.2.
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Dataset MRR Hits@1 Hits@3 Hits@10

WN18RR (15.0, 0.03125) (15.0, 0.03125) (15.0, 0.03125) (3.0, 0.76740)
FB15k-237 (15.0, 0.03125) (15.0, 0.03125) (15.0, 0.03125) (15.0, 0.03125)

Aristo-v4 (15.0, 0.03125) (15.0, 0.03125) (15.0, 0.03125) (15.0, 0.03125)

Table 4: Wilcoxon signed-rank test for ComplEx-N3 on several datasets. For each dataset and metric,
we report the corresponding statistics – i.e. the sum of ranks of positive differences – and
the p-value as (statistics, p-value).

4.1.1 SIGNIFICANCE TESTING

In order to show that the improvements brought by relation perturbation are significant, we run the
experiments with 5 random seeds and perform Wilcoxon signed-rank test [Wilcoxon, 1992] over the
metrics obtained with and without relation prediction. The test is performed as follows. First, we
computed the differences between results obtained with ComplEx trained with and without relation
prediction. The null hypothesis is that the median of the differences is negative. Table 4 summarises
the result. We can observe that almost all p-values are about 0.03, which means we can reject the null
hypothesis at a confidence level of about 97%. The new training objective that incorporates relation
prediction as an auxiliary training objective significantly improves the performance of KBC models
except for Hits@10 on WN18RR.

4.1.2 ABLATION ON THE NUMBER OF PREDICATES

As previously discussed, relation prediction brings different impacts to WN18RR, FB15k-237, and
Aristo-v4. Since one of the biggest differences among these datasets is the number of different
predicates |R| (1, 605 for Aristo-v4 and 237 for FB15k-237, while only 11 for WN18RR), we would
like to determine the impact of perturbing relations with various |R|. In order to achieve this, we
construct a series of datasets with different |R| by sampling triples containing a subset of predicates
from FB15k-237. For example, to construct a dataset with only 5 predicates, we first sampled 5
predicates from the set of 237 predicates and then extracted triples containing these 5 predicates
as the new dataset. In total, we have datasets with |R| ∈ [5, 25, 50, 100, 150, 200] predicates. To
address the noise introduced in predicate sampling during datasets construction, we experimented
with 3 random seeds. For convenience, we set the weight of relation prediction λ to 1 and performed
a similar grid-search over the regularisation and other hyper-parameters to ensure that the models
were regularised and trained appropriately with the different amounts of training and test data points.

Results are summarised in Figure 1. As shown in the right portion of Figure 1, predicting
relations helps datasets with more predicates, resulting in a 2%–4% boost in MRR, Hits@1, and
Hits@3. For datasets with fewer than 50 predicates, there is considerable fluctuation in the relative
change as shown in the left portion of the figure – but a clear downward trend. These results verify
our hypothesis that relation prediction brings benefits to datasets with a larger number of predicates.
Note that we did not tune the weight of relation prediction objective λ (and fixed it to 1), and this
choice might have been sub-optimal on datasets with a fewer number of predicates.
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Figure 1: Relative changes between ComplEx trained with and w/o Relation Prediction on datasets
with varying numbers of predicates |R|. We experimented with 3 random seeds. Larger
bars mean more variance. Relative changes were computed with (m+ −m−)/m−, where
m+ and m− denote the metric values with and w/o relation prediction. A clear downward
trend can be observed for datasets with |R| < 50 while 2%− 4% clear increase in MRR,
Hits@1, and Hits@3 are shown where |R| > 50.

Model Relation Prediction MRR Hits@1 Hits@3 Hits@10

CP
% 0.356 0.262 0.392 0.546
" 0.366 0.274 0.401 0.550

ComplEx
% 0.366 0.271 0.401 0.557
" 0.382 0.289 0.419 0.568

RESCAL
% 0.356 0.266 0.390 0.532
" 0.359 0.271 0.395 0.533

TuckER
% 0.351 0.260 0.386 0.532
" 0.354 0.264 0.388 0.535

Table 5: Test performance comparison on FB15k-237 across 4 different models – CP, ComplEx,
RESCAL, and TuckER. We set the weight of relation prediction to 1 and performed a grid
search over hyper-parameters. More details are available in the appendix. While relation
prediction seems to help all 4 models, it brings more benefit to CP and ComplEx compared
to TuckER and RESCAL.

4.2 RQ2: Impacts of Relation Prediction on Different KBC Models

For measuring how does relation prediction influences the downstream accuracy of KBC models, we
run experiments on FB15k-237 with several models – namely ComplEx, CP, TuckER, and RESCAL.

8



RELATION PREDICTION AS AN AUXILIARY TRAINING OBJECTIVE FOR KBC

0 500 1000 1500 2000 2500 3000 3500 4000

Embedding Size

0.22

0.23

0.24

0.25

0.26

0.27

H
it
s@

1

Figure 2: Hits@1 versus embedding size for CP on FB15k-237, each point represents a model
trained with some specific embedding size with (blue) / -out (red) perturbing relations.
The smallest embedding size is 25.

For simplicity, we set the weight of relation prediction λ to 1. As shown in Table 5, including relation
prediction as an auxiliary training objective brings consistent improvement to all models. Notably,
up to a 4.4% and a 6.6% increase in Hits@1 can be observed respectively for CP and ComplEx. For
TuckER and RESCAL, the improvements brought by relation perturbation are relatively small. This
may be due to the fact that we had to use smaller embedding sizes for TuckER and RESCAL, since
these models are known to suffer from scalability problems when used with larger embedding sizes.
We include the ablation on embedding sizes of the models in Section 4.2.1. As for the computational
cost, in our experiments, adopting the new loss only added an average 2% increase in training time
per epoch, though it might require more epochs to converge.

4.2.1 ABLATIONS ON EMBEDDING SIZES

In our experiments, increasing the embedding size of the model leads to better performance. However,
there might exist a saturating point where larger embedding sizes stop boosting the performance. We
are interested in how perturbing relations will impact the saturating point and which embedding sizes
benefit most from it. Figure 2 shows the relationship between the embedding size and the MRR for
CP on FB15k-237. At small embedding sizes, perturbing relations makes little difference. However,
it does help CP with larger embedding sizes and delays the saturating point. As we can see, the slope
of the blue curve is larger than the red one, which bends little between an embedding size of1,000
and an embedding size of 4,000. We can thus observe that perturbing relations leaves more headroom
to improve the model by increasing embedding sizes.

4.3 RQ3: Qualitative Analysis of the Learned Entity and Relation Representations

In our experiments, we observe that relation prediction improves the link prediction accuracy for
MANY-TO-MANY predicates, which are known to be difficult for KBC models [Bordes et al., 2013].
Table 6 lists the top 10 predicates that benefit most from relation prediction. We rank the predicates
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Figure 3: t-SNE visualisations for ComplEx embeddings, trained with relation prediction (left) and
without relation prediction (right). Red points and blue points correspond to predicates
and entities respectively. Dashed boxes highlight different clusters.

/ice hockey/hockey team/current roster./sports/sports team roster/position
/sports/sports team/roster./baseball/baseball roster position/position
/location/country/second level divisions
/tv/tv producer/programs produced./tv/tv producer term/program
/olympics/olympic sport/athletes./olympics/olympic athlete affiliation/olympics
/award/award winning work/awards won./award/award honor/honored for
/music/instrument/family
/olympics/olympic games/sports
/base/biblioness/bibs location/state
/soccer/football team/current roster./soccer/football roster position/position

Table 6: Top 10 predicates that are improved most by relation prediction.

by averaging the associated MRR of (s, p, ?) and (?, p, o) queries. Table 14 and Table 15 list the
top 20 queries of (s, p, ? and (?, p, o) that are improved most by relation prediction. We can see
that relation prediction helps the queries like “Where was film Magic Mike released?”, “Where was
Paramount Pictures founded?”, “Which person appear in the film The Dictator 2012?”, “Which
places are located in UK?” and “Which award did Vera Drake win?”.

To intuitively understand why it helps with these predicates, we ran t-SNE over the learned entity
and predicate representations. Reciprocal predicates are also included in the t-SNE visualisations.
We set the embedding size to 1000, and use N3 regularisation. Hyper-parameters were chosen based
on the validation MRR. We run t-SNE for 5000 steps with 50 as perplexity. As we can see from
Figure 3, there are more predicate clusters in the t-SNE visualisation for relation prediction compared
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to without relation prediction. This demonstrates relation prediction helps the model distinguish
between different predicates: Most predicates are separated from the entities (the pink region) while
some predicates with similar semantics or subject-object contexts form a cluster (the red region);
There are also a few predicates, which are not close to their predicate counterparts but instead close to
highly related entities (the green region). Table 7 lists 3 example predicates for each region. Though
there can be information loss during the process of projecting high-dimensional embedding vectors
into 2-dimensional space, we hope this visualisation will help illustrate how relation prediction helps
to learn more diversified predicate representations.

Pink Region

/base/schemastaging/organization extra/phone number./base/schemastaging/phone sandbox/contact category
/location/statistical region/places exported to./location/imports and exports/exported to
/sports/sports league/teams./sports/sports league participation/team

Red Region

/people/person/nationality
/people/person/religion
/soccer/football team/current roster./sports/sports team roster/position

Green Region

/education/educational institution/students graduates./education/education/student
/common/topic/webpage./common/webpage/category
/education/educational institution/students graduates./education/education/major field of study

Table 7: Three example predicates in each region of the t-SNE plot.

5. Discussion and Conclusion

In this paper, we propose to use a new self-supervised objective for training KBC models - by simply
incorporating relation prediction into the commonly used 1vsAll objective. In our experiments, we
show that adding such a simple learning objective is significantly helpful to various KBC models. It
brings up to 9.9% boost in Hits@1 for ComplEx trained on FB15k-237, even though the evaluation
task of entity ranking might seem irrelevant to relation prediction.

Our work suggests a worthwhile direction towards devising relation-aware self-supervised
objectives for KBC. In this paper, we mainly focus on simple factorisation-based models. Future
work will consider analysing the proposed objective for more complex KBC models, such as graph
neural network-based KBC models, and on more datasets. Another interesting future work direction is
analysing the proposed auxiliary objective on more downstream applications besides link prediction,
and evaluate whether it can be used to learn useful multi-relational graph representations.
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Appendix A. Code Snippet for Relation Prediction as an Auxiliary Training
Objective

Figure 4 demonstrates how to add relation prediction to the existing implementation of ComplEx.

Appendix B. Hyper-parameters Sweeps

In this section, we summarise all the hyper-parameters used in our experiments. We used Tesla
P100 and Tesla V100 GPUs to run the experiments. We implemented each model by PyTorch. Our
codebase is based on https://github.com/facebookresearch/kbc.

B.1 Hyper-parameter Ranges of Relation Prediction Across Datasets

B.1.1 KINSHIP, NATIONS, AND UMLS

Model d or (d, dr) lr bsz reg

RESCAL [50, 100, 200] [0.1, 0.01] [10, 50, 100, 500] [0, 0.005, 0.01, 0.05, 0.1, 0.5]
ComplEx [100, 200, 500, 1000] [0.1, 0.01] [10, 50, 100, 500] [0, 0.005, 0.01, 0.05, 0.1, 0.5]
CP [200, 400, 1000, 2000] [0.1, 0.01] [10, 50, 100, 500] [0, 0.005, 0.01, 0.05, 0.1, 0.5]
TuckER [(100, 25), (200, 25), (100, 50), (200, 50), (100, 100), (200, 100)] [0.1, 0.01] [10, 50, 100, 500] [0, 0.005, 0.01, 0.05, 0.1, 0.5]

Table 8: Hyper-parameter Search Different KBC Models on Small Datasets (Kinship, Nations,
UMLS). d stands for embedding size. dr stands for a separate embedding size of relations.
lr is the learning rate. bsz is the batch size. reg is the regularization strength.

Dataset Relation Prediction Entity Prediction Model d dr lr bsz reg λ Dev MRR

KINSHIP " % Tucker 200 100 0.10 10 0.1 NA 0.919581
% " CP 2000 NA 0.10 50 0.01 NA 0.897429
" " CP 2000 NA 0.10 50 0.05 4.000 0.918323

NATIONS " % Tucker 200 50 0.01 10 0.1 NA 0.686010
% " CP 2000 NA 0.01 10 0.01 NA 0.855388
" " TuckER 200 25 0.01 10 0.10 0.250 0.865352

UMLS " % CP 1000 NA 0.1 500 0.01 NA 0.863008
% " ComplEx 1000 NA 0.10 10 0.00 NA 0.967626
" " ComplEx 1000 NA 0.01 10 0.00 0.500 0.971612

Table 9: Best Hyper-parameter Configuration and the Corresponding Validation MRR on Small
Datasets. d stands for embedding size. dr stands for a separate embedding size of relations.
lr is the learning rate. bsz is the batch size. reg is the regularization strength. λ is the
weighting of relation prediction. NA indicates not applicable.

For all small datasets (Kinship, Nations, UMLS), we trained RESCAL, ComplEx, CP and
TuckER with Adagrad optimiser and N3 regularisation for at most 400 epochs. Reciprocal triples
were included since they are reported to be helpful [Dettmers et al., 2018, Lacroix et al., 2018].
We did grid searches over hyper-parameter combinations and chose the best configuration for each
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Figure 4: Relation Prediction for ComplEx, the red region shows the lines related to using relation
prediction as an auxiliary training task.
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dataset based on validation MRR. We listed the grids of hyper-parameter search in Table 8 and report
the best-searched configuration in Table 9. As for the balancing between relation prediction and
entity prediction, we searched the weight of relation prediction over {4, 2, 0.5, 0.25, 0.125}.

B.1.2 WN18RR, FB15K-237, AND ARISTO-V4

For all datasets, we trained ComplEx with N3 regularizer and Adagrad optimiser and N3 regulari-
sation for at most 400 epochs. Reciprocal triples were included since they are reported to be help-
ful [Dettmers et al., 2018, Lacroix et al., 2018]. As for the weight of relation prediction, we searched
over different zones on different datasets. For WN18RR, we searched the weight of relation predic-
tion over [0.005, 0.001, 0.05, 0.1, 0.5, 1]. For FB15k-237, we searched over [0.125, 0.25, 0.5, 1, 2, 4].
For Aristo-v4, we searched over [0.125, 0.25, 0.5, 1, 2, 4]. We did grid searches over hyper-parameter
combinations and chose the best configuration for each dataset based on validation MRR. We report
the grids for each dataset in Table 10, and the best found configuration in Table 11.

Dataset d lr bsz reg

WN18RR [100, 500, 1000] [0.1, 0.01] [100, 500, 1000] [0.005, 0.01, 0.05, 0.1, 0.5, 1]
FB15k-237 [100, 500, 1000] [0.1, 0.01] [100, 500, 1000] [0.0005, 0.005, 0.01, 0.05, 0.1, 0.5, 1, 0]
Aristo-v4 [500, 1000, 1500] [0.1, 0.01] [100, 500, 1000] [0, 0.005, 0.01, 0.05, 0.1, 0.5, 1]

Table 10: Hyper-parameter Search for Vanila Relation Perturbation over ComplEx on Different
Datasets d stands for embedding size. lr is the learning rate. bsz is the batch size. reg is
the regularization strength. λ is the weighting of relation prediction.

Dataset Relation Prediction Entity Prediction d lr bsz reg λ Dev MRR

WN18RR " % 1000 0.10 500 0.5 NA 0.257945
% " 1000 0.10 100 0.10 NA 0.488083
" " 1000 0.10 100 0.10 0.050 0.490053

FB15k-237 " % 1000 0.10 1000 0.0005 NA 0.262888
% " 1000 0.10 100 0.05 NA 0.372305
" " 1000 0.10 1000 0.05 4.000 0.393722

Aristo-v4 " " 1500 0.10 1000 0.01 NA 0.168700
% " 1500 0.01 500 0.01 NA 0.307076
" " 1500 0.10 100 0.05 0.125 0.314443

Table 11: Best Hyper-parameter Configurations and the Corresponding Validation MRR for Com-
plEx Across Datasets with Weighted Relation Perturbation. d stands for embedding size.
lr is the learning rate. bsz is the batch size. reg is the regularization strength. λ is the
weighting of relation prediction. NA indicates not applicable.
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B.2 Hyper-parameter Ranges of Relation Prediction Across Models

We experiment with each model on FB15k-237. Note that the original TucKER [Balazevic et al.,
2019] includes some training strategies which are not used in CP, ComplEx and TuckER, like
dropout, learning rate decay etc. However, for a fair comparison of how relation prediction affects
each model, we trained all the models conditioned on similar settings with Adagrad optimizer
and N3 regularisation for at most 400 epochs. We did grid searches and selected the best hyper-
parameter configurations according to validation MRR. We set the weight of relation prediction
to 1 in this experiment. Table 12 lists the grid of the shared hyper-parameters. For RESCAL, the
regularisation over predicate matrices can be normalised over the rank to achieve better results. Also
F2 regularisation empirically performed better than N3 regulariser for RESCAL. For TuckER, the
ranks for predicate and entity are different. Table 13 lists the best hyper-parameter configuration
found by our search.

Model d or (d, dr) lr bsz reg

RESCAL [128, 256, 512] [0.1, 0.01] [100, 500, 1000] [0, 0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1]
ComplEx [100, 500, 1000] [0.1, 0.01] [100, 500, 1000] [0, 0.0005, 0.005, 0.01, 0.05, 0.1, 0.5, 1]
CP [64, 128, 256, 512, 4000] [0.1, 0.01] [100, 500, 1000] [0.005, 0.01, 0.05, 0.1, 0.5, 1]
TuckER [(1000, 150), (1000, 100),

(400, 400), (500, 75), (300,
300), (200, 200)]

[0.1, 0.01] [100, 500, 1000] [0.005, 0.01, 0.05, 0.1, 0.5, 1]

Table 12: Hyper-parameter Search Different KBC Models on FB15k-237. d stands for embedding
size. dr stands for a separate embedding size of relations. lr is the learning rate. bsz is the
batch size. reg is the regularization strength.

Model Relation Prediction d or (d, dr) lr bsz reg Dev MRR

RESCAL % 512 0.1 500 0.00 0.365384
" 512 0.1 100 0.00 0.366789

ComplEx % 1000 0.1 100 0.05 0.372305
" 1000 0.1 1000 0.05 0.387133

CP % 4000 0.1 100 0.05 0.364245
" 4000 0.1 1000 0.05 0.372408

TuckER % (1000, 100) 0.1 100 0.10 0.358857
" (1000, 100) 0.1 100 0.50 0.359932

Table 13: Best Hyper-parameter Configuration and the Corresponding Validation MRR on FB15k-
237 Across Models. For simplicity, we set the weighting λ to 1. d stands for embedding
size. dr stands for a separate embedding size of relations. lr is the learning rate. bsz is the
batch size. reg is the regularization strength.
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Figure 5: MRR versus Rank for CP on FB15k-237.

Appendix C. Additional Results

C.1 More Metrics for Ablation on Rank

Figure 5 (MRR), Figure 6 (Hits@3) and Figure 7 (Hits@10) show the additional metric for the
experiments ablating ranks. Blue indicates training with relation prediction while red indicates
training without prediction. The range of the rank is [25, 50, 100, 500, 1000, 2000, 3000, 4000]

C.2 Top 20 Queries That Are Improved Most by Relation Prediction

Table 14 shows the top 20 queries of (?, p, o) form that are improved most by relation prediction while
Table 15 shows the top 20 queries of (s, p, ?) form that are improved most by relation prediction.
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Figure 6: Hits@3 versus Rank for CP on FB15k-237.
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Figure 7: Hits@10 versus Rank for CP on FB15k-237.
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Subject Predicate Object ∆ 1/Rank

Paramount Pictures /common/topic/webpage /common/webpage/category NA 1.000
Midfielder /sports/sports position/players /sports/sports team roster/team Gaziantepspor 0.988
The Dictator (2012 film) /film/film/personal appearances /film/personal film appearance/person Hillary Clinton 0.970
Academy Award for Best
Supporting Actress

/award/award category/winners /award/award honor/award winner Maureen Stapleton 0.963

Christopher Columbus /user/tsegaran/random/taxonomy subject/entry
/user/tsegaran/random/taxonomy entry/taxonomy

Library of Congress Classifi-
cation

0.950

United Kingdom /location/location/contains Westminster 0.933
President /organization/role/leaders /organization/leadership/organization West Virginia University 0.923
Academy Award for Best
Supporting Actor

/award/award category/winners /award/award honor/award winner Christopher Walken 0.923

President /organization/role/leaders /organization/leadership/organization Bryn Mawr College 0.917
President /organization/role/leaders /organization/leadership/organization Dickinson College 0.917
National Society of Film
Critics Award for Best Ac-
tress

/award/award category/winners /award/award honor/award winner Reese Witherspoon 0.917

President /organization/role/leaders /organization/leadership/organization Louisiana State University 0.917
Vera Drake /award/award winning work/awards won /award/award honor/award Los Angeles Film Critics As-

sociation Award for Best Ac-
tress

0.900

President /organization/role/leaders /organization/leadership/organization University of Oklahoma 0.900
United States /location/country/second level divisions Marion County, Indiana 0.900
President /organization/role/leaders /organization/leadership/organization University of Southern Cali-

fornia
0.900

Travis Tritt /film/actor/film /film/performance/film Blues Brothers 2000 0.900
London Film Critics’ Circle
Award for Director of the
Year

/award/award category/winners /award/award honor/award winner Neil Jordan 0.900

United States /location/country/second level divisions Niagara County, New York 0.900
Deion Sanders /people/person/places lived /people/place lived/location Atlanta 0.900

Table 14: Top 20 (s, p, o) test triples, based on their increase of the right-hand-side (i.e. on the task of predicting o given p and s) reciprocal
rank after we introduce the relation prediction auxiliary objective.
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Subject Predicate Object ∆ 1/Rank

Midfielder /soccer/football team/current roster
/soccer/football roster position/position

Wimbledon F.C. 0.990

Forward (association football) /soccer/football team/current roster /sports/sports team roster/position Iraq national football team 0.989
United States /film/film/release date s

/film/film regional release date/film release region
Cleopatra (1963 film) 0.975

Critics’ Choice Movie Award for Best Act-
ing Ensemble

/award/award nominee/award nominations
/award/award nomination/award

Matt Damon 0.975

Female /people/person/gender Grey DeLisle 0.968
United Kingdom /film/film/release date s

/film/film regional release date/film release region
New Year’s Eve (2011 film) 0.967

United States dollar /location/statistical region/rent50 2
/measurement unit/dated money value/currency

Anchorage, Alaska 0.966

United Kingdom /film/film/release date s
/film/film regional release date/film release region

Killing Them Softly 0.962

Glendale, California /people/person/spouse s /people/marriage/location of ceremony Jane Wyman 0.962
United Kingdom /film/film/release date s

/film/film regional release date/film release region
ParaNorman 0.962

Streaming media /film/film/distributors
/film/film film distributor relationship/film distribution medium

Pulp Fiction 0.960

United Kingdom /film/film/release date s
/film/film regional release date/film release region

Magic Mike 0.958

United States dollar /location/statistical region/rent50 2
/measurement unit/dated money value/currency

Napa County, California 0.952

United Kingdom /film/film/release date s
/film/film regional release date/film release region

Rock of Ages (2012 film) 0.952

United Kingdom /film/film/release date s
/film/film regional release date/film release region

Contact (1997 American
film)

0.950

Streaming media /film/film/distributors
/film/film film distributor relationship/film distribution medium

American History X 0.950

Los Angeles /organization/organization/place founded Paramount Pictures 0.947
United Kingdom /film/film/release date s

/film/film regional release date/film release region
L.A. Confidential (film) 0.941

Psychological thriller /film/film/genre Family Plot 0.941
United Kingdom /film/film/release date s

/film/film regional release date/film release region
Moneyball (film) 0.938

Table 15: Top 20 (s, p, o) test triples, based on their increase of the left-hand-side (i.e. on the task of predicting s given p and o) reciprocal
rank after we introduce the relation prediction auxiliary objective.
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