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Abstract

Knowledge Graphs(KGs) represent factual information as graphs of entities connected
by relations. Knowledge graph embeddings have emerged as a popular approach to encode
this information for various downstream tasks like natural language inference, question an-
swering and dialogue generation. As knowledge bases expand, we are presented with newer
(open-world) entities, often with textual descriptions. We require techniques to embed new
entities as they arrive using the textual information at hand. This task of open-world KG
completion has received some attention in recent years. However, we find that existing ap-
proaches suffer from one or more of four drawbacks – 1) They are not modular with respect
to the choice of the KG embedding model 2) They ignore best practices for aligning two
embedding spaces 3) They do not account for differences in training strategy needed when
presented with datasets with different description sizes and 4) They do not produce entity
embeddings for use by downstream tasks. To address these problems, we propose FOlK

(Framework for Open-World KG embeddings) - a technique that jointly learns embed-
dings for KG entities from descriptions and KG structure for open-world knowledge graph
completion. Additionally, we modify existing data sources and make available YAGO3-10-
Open and WN18RR-Open two datasets that are well suited for demonstrating the efficacy
of open-world KG completion approaches. Finally, we empirically demonstrate the effec-
tiveness of our model in improving upon state-of-the-art baselines on several tasks resulting
in performance increases of up to 72% on mean reciprocal rank.

1. Introduction

Knowledge graphs (KG) are facts structured in the form of a graph, where the nodes are
the entities, and the edges are the relationships between those entities. For example, con-
sider the fact “Narendra Modi is the Prime Minister of India and lives in India.”. In this
example, Narendra Modi and India are two entities connected by relations isPrimeMi-
nister and livesIn. KGs are often represented in the form of triples, example, (Narendra
Modi, isPrimeMinister, India). KG embeddings are continuous multi-dimensional vectors
of entities and relations that, through a predefined scoring function, rank real facts in a
knowledge base over spurious ones. KG embeddings have a number of applications ranging
from KG completion [Bordes et al., 2013] to natural language inference [Peters et al., 2019],
knowledge-aware conversation generation [Zhou et al., 2018], question-answering [Saxena
et al., 2020] and recommendation [Chen et al., 2019].
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Large knowledge bases like DBpedia [Auer et al., 2007] rely on unstructured information
sources like Wikipedia, which is growing at the rate of 602 new articles per day1. Appli-
cations or tasks that rely on knowledge graph embeddings require approaches to embed
new entities introduced due to evolving knowledge bases. Traditional (or closed-world)
KG embedding models, are limited to the transductive settings, where all the entities and
the relations are known during learning. Thus, these approaches are not suitable for KGs
where the entities and the relations are augmented over time. An ideal KG embedding
model should be able to generalise to newer (or open-world) entities and relations in the
KGs without re-learning on the updated KGs. We require a method to embed any new (or
open-world) entities based on the rich semantic information that exist about them in the
form of new articles, and also based on the existing connections in the KG. This brings up
two tasks that make use of an entity’s description- (1) Open-World KG Completion- which
is the task of relating the new entity to the rest of the KG, and (2) Open-World Entity
Embedding- which is the task of producing an embedding for a new entity.

Few approaches have been introduced in recent years for these open-world KG related
tasks. Studying the literature, we identify five critical properties that make an open-world
KG embedding approach efficient, robust and useful for a plethora of applications.

1. Open-world Embedding Generation: KG applications like question answering or
recommendation require entity and relation embeddings. Techniques like ConMask [Shi
and Weninger, 2018] which are only optimised for KG Completion and do not produce
entity/relation embeddings cannot be used for such downstream applications. Hence, it is
important that the approaches must also embed open-world KG entities.
2. Joint Training: To embed open-world entities using their descriptions, we need to
align two spaces – description space and KG structure space. Techniques that learn this
alignment while keeping one or both of these spaces fixed are said to be offline. Techniques
that learn the alignment operation and individual embeddings at the same time are called
joint. Studies [Ormazabal et al., 2019] have shown that embeddings produced by joint
training of the two spaces have significantly improved geometric properties as compared
to offline training. These geometric properties are important to retain the KG structure
on the introduction of new entities, thus, resulting in better performance in downstream
applications.
3. Efficient Ranking: Connecting a new entity to the rest of the KG requires the ranking
of potential connections. The score is generated for all possible triples which are ranked to
determine the top connections [Bordes et al., 2013, Yang et al., 2015, Trouillon et al., 2016].
The scoring function should preferably have time complexity of the order of the embedding
dimensions. For real-time applications, the time and memory requirements for inference
must be minimal and thus large neural networks models are not efficient as a scoring func-
tion to score all possible triples.
4. Modular: As observed by [Chang et al., 2020], different KG embedding approaches are
suitable for different applications. For instance, translational methods [Bordes et al., 2013]
are better at clustering and entity classification applications, whereas multiplicative meth-
ods [Trouillon et al., 2016, Yang et al., 2015] are better at KG completion. For this reason,
our open-world framework must be modular with respect to the choice of the structural

1. https://en.wikipedia.org/wiki/Wikipedia:Statistics
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embeddings to accommodate a variety of applications.
5. Sequence-Size Aware: Any proposed approach must be able to leverage long de-
scriptions using state-of-the-art language models. At the same time, large, popular KGs
like Wikidata [Vrandečić and Krötzsch, 2014] have concise sentence-long descriptions that
do not benefit from large language models. Any proposed approach must be efficient and
perform competitively when run on datasets with short descriptions.
Our contributions are summarised below. Our code and datasets are available at https:

//github.com/RBC-DSAI-IITM/KnowledgGraphZeroShotLearning.

1. We propose FOlK - the first-ever joint, modular, efficient and sequence size aware
framework to produce open-world KG entity embeddings.

2. We empirically evaluate performance of our model on open-world KG completion,
closed-world KG completion and entity classification. We demonstrate significant
improvement of upto 72% on mean reciprocal rank over the state-of-the-art.

2. Problem Definition

Before discussing existing approaches and our solution, we give a brief introduction to the
problem of learning embeddings for open-world KG entities. Knowledge graphs primarily
consist of a set of entities E = {e1, e2, ...e|E|}, a set of relations R = {r1, r2, ...r|R|} and a
set of (head,relation,tail) triples T ⊆ {τi : (hi, ri, ti)|hi, ti ∈ E , ri ∈ R}. We refer to the
set of entities E with relationship information in the existing KG as the closed or structural
entity set. In many real world scenarios we often have the descriptions of each entity in our
knowledge graph. We denote the description set as D = {d1, d2, ...d|E|}. ei and ri are real
(or complex valued) vectors or embeddings. For model like TransE [Bordes et al., 2013]
or DistMult [Yang et al., 2015], ei, ri ∈ Rδ (where δ denotes the embedding dimension).
ei, ri ∈ Cδ in the case of models like ComplEx [Trouillon et al., 2016]. Throughout we use
boldface to indicate the vector embedding corresponding to an entity or relation. We use
h, r and t to denote head, relation and tail embeddings respectively, in a triple. Entities in
a knowledge graph may appear as heads, tails or both. As knowledge bases expand we are
presented with a new set of entities E ′ = {e′1, e

′
2, ...e

′

|E ′ |} and their corresponding descrip-

tions D′ = {d′1, d
′
2, ...d

′

|E ′ |}. Our task is to embed the open entity set E ′ using D′ .

3. Related Work

In this section, we briefly summarise state of the art closed-world or structural KG embed-
ding approaches, approaches with open-world entities and their limitations.
Structural KG Embeddings: These models use only the triple or structural informa-
tion of a KG. Most models are learnt by minimising an energy function on (h, r, t) triples
through negative sampling. TransE [Bordes et al., 2013] uses a translational energy function
whereas DistMult [Yang et al., 2015] and ComplEx [Trouillon et al., 2016] use multiplicative
energy functions. The energy and loss functions of all three methods are detailed in Table 8.
Approaches with open-world entities: These models use additional textual descrip-
tions of the entities along with structural information available in KG.(1) DKRL [Xie et al.,
2016], constructs two separate spaces - the structural embedding space and the description
embedding space and aligns the two using a version of the cross-completion loss we discuss
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in Section 6.3. A key limitation of this approach is its inability to generate embeddings
for new open-world entities as a consequence of training the two embeddings in separate
spaces. (2) JointE [Zhao et al., 2017], uses tf-idf weighted bag-of-words features to encode
a description and proposes a custom multiplicative energy function to score a triple. The
approach is not modular hence limits the usability of approach for specific applications.
Similarly, (3) ConMask’s [Shi and Weninger, 2018] model also uses a custom energy func-
tion to score a triple. A triple is scored using a combination of multiple features generated
using masked fusion of the entity description with entity and relation names. The usage of
a large neural network model to score a triple limits the scalability of the model to score
all possible triples, thus filtering methods are used to filter out certain triples resulting in
information loss. Further details to be discussed in Sections 6.2 and 6.3. (4) OWE, uses
offline training to learn a projection matrix to align descriptions to KG structure. The KG
embeddings are pre-trained and not modified at alignment time. We discuss the limitations
of such an approach in Section 6.3. We have compared the properties of various approaches
and our framework in Table 9.

4. Proposed FOlK Model

Figure 1: An illustration of FOlK’s architecture

Overall architecture of our framework, FOlK, is presented in Figure 1. It has three
components- (1) Structural Embedding module to learn the embeddings of the entities and
relations already existing in a KG (2) Description Embedding module which is an encoder
to represent the textual information of open-world as well as closed-world entities. (3)
Description Projection module to project the description to a space where the structure
and description embeddings are aligned, this represents the KG embedding space used for
any of the downstream tasks like KG completion or entity classification. When presented
with a new entity, we induce the KG embedding by encoding it’s description and projecting
it to KG embedding space. The following sections will discuss these modules in detail along
with various training strategies that we have used.
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4.1 Structural Embeddings

Our framework is agnostic to the choice of the structural KG embedding model. Unless
otherwise specified, we use ComplEx as our default method as it has out-performed other
structural embedding methods as reported in a recent survey [Dai et al., 2020].

We briefly explain a few notations first. Let E test and Evalid be the open-world test
and validation sets of entities that are not available in the training set. We denote the
train, validation and test splits of the triple set T by Ttrain, Tvalid and Ttest. T opentest and
T openvalid denote the test and validation sets of triples where either the head or tail of each
triple occurs in E test or Evalid respectively. We augment the train split Ttrain with corrupted
triplets, i.e, Tcorr ⊆ {τcorr.i : (hi, ri, ti)|hi, ti ∈ E , ri ∈ R, (hi, ri, ti) /∈ Ttrain} to obtain
T ◦ = Ttrain ∪ Tcorr. We use the indicator variable Ih,r,t ∈ {1,−1} to return 1 (or -1)
corresponding to whether (h, r, t) ∈ Ttrain (or not). We denote the parameters of this
module (the real or complex embeddings) by ΘS . The loss function used by ComplEx is
represented in equation 1, where Re(x) is real part of complex value x and t is complex
conjugate. The loss functions of TransE and DistMult are shown in Table 8. We also include
a regularization loss term Lreg which is the average squared `2-norm of all the structural
embeddings with the regularization parameter λ.

L =
∑

(h,r,t)∈T ◦
log(1 + exp(−Ih,r,tRe(〈h, r, t〉))) (1)

4.2 Induced Embeddings

To induce new embeddings for open-world entities, we learn to encode and project entity
descriptions to KG entity space at train time.
Description Encoding: To make our framework sequence-size-aware, we use different
text embedding approaches based on the description size to encode entity descriptions. For
short entity descriptions, ten or fewer words, we use the Continuous Bag-of-words (CBOW)
encoder which assumes that similar entities have related keywords. The representation of
the entity, ΘDs (s for short description), is determined by the summation of all words’
pre-trained word2vec [Mikolov et al., 2013] embeddings. For long entity descriptions we
need to capture more complex interactions. Hence we use the transformer-based model
RoBERTa [Devlin et al., 2018] which uses attention or differential weighing of the different
parts of the description to capture the most significant information. To the best of our
knowledge, FOlK is the first framework to use a transformer-based encoder to embed open-
world entities. RoBERTa tokenizes each input sentence. The output at the final layer is a
768-dimensional vector for each token. The entity description ΘDl

(l for long description)
is generated by taking the average of all the tokens’ embeddings.

Description Projection: We use an affine transformation function to project the en-
tity’s description embedding φD(e) to the KG embedding space, represented in equation 2.
The projection parameters, ΘP , are trained jointly, in tandem with the rest of the model.
M and b project the description embedding to to the real space and Mi and bi project to
the imaginary space. Unlike ComplEx, if the embedding space only has a real component
as in TransE or DistMult, then we use just the real transformation matrix and bias.

φP (e) = MφD(e) + b+ i(M iφD(e) + bi) (2)
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4.3 Cross-Domain Alignment

For cross-domain alignment, we minimise the squared `2 distance between projected descrip-
tion embeddings φP (φD(e)) and structural embeddings e as in equation 3. We borrow
best practices for aligning the two spaces from Bilingual Lexicon Induction (BLI) literature,
where this is a widely explored problem. It aims to learn an alignment between the word
vector spaces of two languages. A common practice in BLI is to use a combination of sig-
nals of varying scales for alignment at the level of parallel words, sentences and documents.
[Chandar et al., 2014] and [Gouws et al., 2015] demonstrate that sentence-level alignment
is sufficient and does not require supervision at paired word level for competitive BLI per-
formance. [Klementiev et al., 2012] train bilingual embeddings by jointly using sentences
to learn a language model on each corpus and enforcing word alignments using a parallel
dictionary. Most relevant to our work is BiSkip, [Luong et al., 2015] which uses a skipgram
objective where the probability of a target language word given the source language con-
text is maximised and vice versa. We find that including such cross-modality objectives in
addition to vanilla projection loss consistently improves performance. BiSkip uses parallel
sentences to apply a bilingual skipgram objective to parallel words. We can treat an entity’s
immediate graph neighbourhood as its context and perform a similar operation. The loss
term LX (X for cross) is represented in equation 4. We call this the cross-domain KG
completion term. The overall loss function is represented in Equation 5, where α and β are
hyperparameters. We demonstrate the effectiveness of the cross-domain terms empirically
in Table 6 and Section 6.3.

Lproj =
∑
e∈E
||φP (φD(e))− e||

2
(3)

LX(h, r, t) = L (h, r,φP (φD(t))) + L (φP (φD(h)), r, t) (4)

LFOlK =

closed-world completion︷ ︸︸ ︷
L + λLreg +

open-world alignment︷ ︸︸ ︷
αLproj + βLX (5)

4.4 Training Strategy

Utilising a large contextual model like RoBERTa necessitates an appropriate training strat-
egy. This is because RoBERTa takes a few hours per epoch to fine-tune and converges
in around 2-3 epochs for long descriptions, while structural KG embedding methods takes
a few minutes per epoch and requires anywhere between 100-400 epochs to converge. So
we adopt a novel phase-wise training approach to train all three modules. We optimise the
same loss term LFOlK but separate the training of the closed-world embedding module (ΘS)
and the description encoding and projection modules (ΘD and ΘP ) into separate phases,
each trained to convergence. Algorithm 1 details this procedure. We denote this model
FOlK(l), the l standing for long descriptions.

We briefly describe a simpler modification of FOlK(l). When entities only have short
descriptions, there is limited contextual information to be gleaned. In such cases, averaging
the Word2Vec word embeddings2 in a description is an effective way to encode semantic
information and using larger architectures does not impart a performance benefit (Table 2).

2. https://wikipedia2vec.github.io/wikipedia2vec/pretrained/
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In this case, we minimise the objective LFOlK (Eqn. 5) using batch-wise stochastic
gradient descent, with ΘS and ΘP initialised at random. We minimise LFOlK training all
3 sets of parameters - ΘS , ΘDs and ΘP .

argmin
ΘSΘDsΘP

LFOlKx (6)

Algorithm 1: Algorithm for FOlK(l)

Input: Triplets: Ttrain, Tvalid, T openvalid

Output: ΘS ,ΘDl
ΘP

Initialise ΘDl
on RoBERTa’s pre-training tasks

Initialise ΘS and ΘP

while MRR no longer improves on Tvalid do
Train ΘS by optimising L + λLreg;

end
i←− 0
while MRR no longer improves on T openvalid do

Phase 1: Freeze ΘDl
and ΘP

if i 6= 0 then
Train ΘS by optimising L + λLreg + αLproj + βLX ; // Until MRR no

longer improves on Tvalid
end
Phase 2: Freeze ΘS

Train ΘDl
and ΘP by optimising αLproj + βLX ; // //Until MRR no longer

improves on T openvalid

i←− i+ 1;

end

5. Datasets

We have evaluated our model on following datasets: FB15k-237-OWE [Shah et al.,
2019] & FB15k-237-OWE(L): FB15k-237-OWE paired with descriptions from Freebase
which are of longer lengths, is called the FB15k-237-OWE(L) dataset. YAGO3-10-Open:
YAGO3-10 [Dettmers et al., 2018] is a subset of the YAGO3 knowledge base. We use
DBpedia to extract long descriptions of the entities. WN18RR-Open WN18RR [Dettmers
et al., 2018] is derived from WordNet. We use the synset definitions from WordNet as
descriptions. For the statistics of our datasets please refer to Table 1.

DSA Score: We report a simple heuristic to measure the relative difficulties of aligning
the description and structure embedding spaces across datasets. The Description-Structure
Alignment (DSA) score is a measure of the pre-existing alignment between the descriptions
of the entities and the KG structure embeddings. For every entity in E , we train a set of
structural KG embeddings independently, without any reference to the descriptions of the
entities. From these structural embeddings we construct a nearest-neighbour graph for the
entities in E using `2 distance, where each node has an out-degree of 100. We denote the edge
set of this graph as ES 1. For every entity in E , we also average the word2vec embeddings of

3. https://yago-knowledge.org/
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Table 1: Dataset Statistics. |d| is the average entity description length. |c.c| is the number
of connected components in the train graph. DSA is the Description-Structure Alignment
score. Please refer to Section 5 for more details.

Entities Statistics Relationships Statistics

Dataset |E| |E ′| |R| |d| DSA |c.c| |Ttrain| |T opentest | |T
open
valid | |Ttest| |Tvalid|

FB15k-237-OWE
12324 2081 235

4.9 12.4
2 242489 22393 9424 7806 5000

FB15k-237-OWE(L) 138.7 12.6
YAGO3-10-Open 107327 11443 32 94.0 4.4 1 769694 56334 37557 39794 26533
WN18RR-Open 36119 4824 11 12.9 4.9 1 69122 4962 3308 3133 2086

the words in the entity’s description. As in the case of the strucutral embeddings, we then
construct a nearest neighbour graph for the entities from this set of description embeddings
and denote it’s edge set by ES 2. The DSA score is the edge-overlap between the two graphs,
divided by the number of nodes: |ES 1 ∩ ES 2|/|E|. A higher value indicates better initial
alignment, and therefore an easier alignment task.

6. Experiments

Through our experiments, we address the following research questions:

• RQ1: What is the quality of the open-world embeddings generated by FOlK?
• RQ2: How well does FOlK satisfy the properties outlined in Section 1?
• RQ3: What are the contributions of each of our model components?

6.1 Training

We train both FOlK(s) and FOlK(l) through batch-wise stochastic gradient descent (SGD).
For FOlK(s), the learning rate and negative sample rate are the same as the best parameters
for the structural model. For information on the hyperparameters of the structural model,
please refer to the additional material. Training the structural model by minimising ΘS on
L + λLreg is an initialisation step for FOlK(l). In phase 2 of FOlK(l), we train ΘDl

and
ΘP using Adam with a learning rate of 0.00005. In phase 1, ΘS is trained using the same
hyperparameters used by the structural model. β is always set to 1. For both FOlK(s) and
phase 1 of FOlK(l), we find that an optimal value of α, 0.001 works well across all datasets.
It was identified through grid search in the space of [1, 0.1, 0.01, 0.001]. During phase 2 of
FOlK(l), α is always set to 1. Wherever we report results of FOlK(l), we also indicate the
performance improvement across iterations.

6.2 Experimental Setup

We study our research questions using three tasks – (1) Open-World KG Completion (2)
Closed world KG Completion and (3) Entity Classification The details are discussed here.
Open-World KG Completion and Closed-World KG Completion: For the KG
completion tasks (Tables 2, 3, 4, 12), we follow the filtered ranking procedure introduced
by [Bordes et al., 2011]. In filtered ranking, we remove the correct answers that occur in
the training set from E before performing the ranking operation. That is, when ranking
tails for (hi, ri) we remove all {t|(hi, ri, t) ∈ Ttrain} from E .

8
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Table 2: Comparing open-world KG com-
pletion results on FB15k-237-OWE, a
dataset with short description.4

FB15k-237-OWE
Model MRR H@1 H@3 H@10

JointE 6.7 2.5 7.0 14.2
DKRL-CNN 19.0 13.0 21.2 31.0

DKRL-CBOW 19.3 13.1 21.5 31.9
ConMask 9.1 3.7 9.5 20.5

OWE 35.2 27.8 38.6 49.1
FOlK(l) iter. 1 38.8 29.9 42.6 54.5
FOlK(l) iter. 2 39.1 32.1 42.5 52.1

FOlK(s) 39.1 30.3 43.0 56.1

Table 3: Performance comparison on closed-
world KG completion on FB15k-237-OWE.

FB15k-237-OWE
Model MRR H@1 H@3 H@10

ComplEx 35.6 24.3 41.2 57.3
FOlK(s) 38.1 26.5 44.3 61.6

Table 4: Performance comparison on open-world KG completion across various datasets
with long descriptions. The results reported are for filtered evaluation (not target-filtered)4.

.

YAGO3-10-Open WN18RR-Open FB15k-237-OWE(L)
Model MRR H@1 H@3 H@10 MRR H@1 H@3 H@10 MRR H@1 H@3 H@10

JointE 5.1 1.8 4.5 11.0 8.2 4.5 8.2 16.0 10.3 5.1 10.9 20.0
DKRL-CNN 2.6 1.5 2.2 4.1 2.5 1.1 2.4 5.1 19.9 13.9 21.7 32.1

DKRL-CBOW 2.7 1.6 2.4 4.2 2.4 1.0 2.3 4.9 20.7 14.5 22.6 33.4
ConMask 17.3 10.3 18.9 31.3 23.3 10.3 22.7 38.4 21.1 14.0 23.4 34.6

OWE 21.6 14.9 23.3 34.3 21.7 17.3 23.4 29.4 32.4 25.1 35.6 46.0

FOlK(l). iter. 1 25.7 19.0 27.5 38.9 35.6 30.9 37.9 45.5 42.4 33.6 45.7 57.2
FOlK(l). iter. 2 26.5 19.5 28.0 40.0 40.3 32.2 40.8 50.0 43.6 34.8 47.6 59.8

Entity Classification: We follow the same procedure as in DKRL[Xie et al., 2016] to
identify entity type information from Freebase for classification. We set up a classification
task on the embeddings by training one-vs-rest logistic classifiers on entities in E . We then
test the performance of our model on the open-world embeddings generated for entities in
E ′ . We report micro-f1 and macro-f1 scores in Table 5.

6.3 Analysis

RQ1 - Open-World Embedding Quality: The results of FOlK on open-world KG
completion for datasets with short and long description are presented in Tables 2 and 4
respectively. FOlK significantly outperforms baselines with an average MRR improvement of
35% across all datasets and an improvement of 72% on WN18RR-Open. YAGO3-10-Open,
FB15k-237-OWE and FB15k-237-OWE(L) (along with Dbpedia and FB20k used by other
baselines) all have either entities or descriptions derived from Wikipedia. Hence, WN18RR-
Open is an important dataset to compare with to evaluate the performance on KGs from
other domains. RoBERTa’s large-scale pre-training ensures that FOlK is fairly robust to
such domain shifts. On the task of open-world entity classification also, we see dramatic
improvements (Table 5), with a macro-f1 score improvement of 33%.

4. Please take note of the filtering used when comparing results across papers. In OWE, the results reported
in Table 3 of the original paper are target-filtered. The results in Table 4 of the original paper are filtered.
For reasons explained in Section 6.3 we only report filtered results in this work.
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DKRL’s poor performance (in Table 4) on YAGO3-10-Open and WN18RR-Open is due to
(1) weak pre-existing alignment between the structure and description space, (2) challenges
in scaling to large graphs. The alignment between structure and description space is repre-
sented as Description-Structure Alignment (DSA) scores in Table 1. WN18RR-Open and
YAGO3-10-Open have DSA scores 60% and 65% lower than that of FB15k-237-OWE re-
spectively, making them harder alignment problems. Also, the specifics of DKRL’s training
strategy make it unable to scale to large graphs.
The authors of ConMask have reported results using target-filtered ranking. Instead of rank-
ing across all entities as tails, target-filtering reduces the search space by ranking only those
entities as tails that have been associated with the test relation at train time, i.e. for a test
(hi, ri) we only rank {t|(hj , ri, t) ∈ Ttrain, hj ∈ E}. This ranking approach not only limits the
connections that can be discovered, but also obscures poor performance. We evaluated that
in a target-filtered setting for ConMask we get similar results as those reported in OWE.
But without target-filtering we see a large performance drop-off of 83% in Hits@1 (Table 2).

Table 5: Comparing open-world
KG embedding techniques for the
task of entity classification.

FB15k-237-OWE(L)
Model macro-f1 micro-f1

OWE 56.1 58.5
FOlK(l). iter. 1 73.2 80.3
FOlK(l). iter. 2 74.8 81.7

Table 6: Ablation Studies on FB15k-237-OWE(L)

Model MRR H@1 H@3 H@10

M1. FOlK(s) w/out βLX 33.6 25.6 36.9 49.0
M2. FOlK(s) w/out αLproj 34.5 26.2. 37.1 50.9
M3. FOlK(s) 37.5 29.0 40.9 55.7
M4. FOlK(l) w/out βLX 42.5 34.5 46.2 57.7
M5. FOlK(l) w/out αLproj 15.8 11.2 18.1 26.0
M6. FOlK(l) 43.6 34.8 47.6 59.8

Table 7: FOlK’s performance on open-world KG completion, paired with different closed-
world embedding approaches. OWE’s results are taken directly from their paper. We use
FOlK(s) as the dataset is FB15k-237-OWE.

TransE DistMult ComplEx

MRR H@1 H@3 H@10 MRR H@1 H@3 H@10 MRR H@1 H@3 H@10
OWE 28.7 21.9 31.7 41.0 34.4 26.6 37.7 49.2 35.2 27.8 38.6 49.1
FOlK(s) 42.3 33.2 46.4 59.4 37.0 28.5 40.0 53.2 39.1 30.3 43.0 56.1

RQ2 - Properties: (1)Ranking: We computed the time taken to complete filtered
ranking on T opentest on an NVIDIA Tesla V100 with 32GB of VRAM. We observe, on aver-
age, a 22x speedup using simple embedding energy functions for scoring rather than large
networks. ConMask’s ranking is inefficient to enumerate every possible fact in a graph. For
e.g., on YAGO3-10-Open ConMask takes 371 seconds, while FOlK takes 71 seconds. (2)
Joint Training: Figure 2, demonstrates the visualisation of embeddings in 3D space using
PCA. The embeddings induced using joint training (blue dots) and pre-existing closed-
world embeddings (red dots) are homogeneous in embedding space, whereas those induced
using OWE are clustered separately. This helps explain the significant improvement in
open-world embedding performance using joint training. (3) Embedding Generation:
The effect of generating embeddings for open-world entities is that we can perform down-
stream tasks on them without having to retrain our knowledge base. For instance, we can

10
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not perform the open-world classification (Table 5) experiment on DKRL or ConMask as
they do not generate embeddings for open-world entities. (4) Modular: From Table 7 we
observe that FOlK can accomodate a variety of structural energy functions, obtaining an
average MRR improvement of 23%. It is interesting to observe here that despite TransE
having 8% improved open-world performance on MRR over ComplEx, ComplEx has supe-
rior closed-world performance (not shown in the table - MRR of 38.6 vs MRR of 26.5). This
lends further support to allowing modular energy functions, based on the application. (5)
Sequence Size Aware: The results presented in Tables 4 and 2 indicate that FOlK(l)
performs competitively regardless of description length. Table 2 indicates that FOlK(s)
has similar performance and is sufficient for SOTA results on datasets with short descrip-
tions. We don’t observe a performance benefit to using a CNN in DKRL (Tables 4, 2).
This suggests that incorporating larger encoders is non-trivial and requires a more careful
consideration of training strategy.

(a) FOlK(s) on FB15k-
237-OWE

(b) FOlK(l) on FB15k-
237-OWE(L)

(c) OWE on FB15k-
237-OWE

(d) OWE on FB15k-
237-OWE(L)

Figure 2: Visualization of embeddings using PCA. The closed-world and projected embed-
dings are differentiated by red and blue dots respectively. FOlK embeddings are indistin-
guishable from each other. In OWE, the two embeddings cluster separately.

RQ3: Contributions of Our Model Components Ablation studies on FB15k-237-
OWE(L) are presented in Table 6. FOlk(s) (M1,M2,M3) in the Table 6 only denotes a
model choice, the dataset used is FB15k-237-OWE(L) throughout. We observe that using
RoBERTa contributes to a 16% MRR improvement (M6 vs M3). Omitting αL results in an
average decrease of 35% in MRR. Similarly, omitting βLX results in an average decrease of
6%. The performance variation across the iterations of FOlK(l) is indicated in Tables 2,
4 and 5. The fact that performance increases uniformly (10% in Hits@10 in the case of
WN18RR, Table 4) across iterations lends strong support to iterative phasewise alignment.
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8. Conclusion

We present FOlK - a framework to generate embeddings for open-world KG entities from
their descriptions. We demonstrate that our framework significantly outperforms SOTA
baselines on a number of tasks by upto 72%. In the future we would like to explore a
more principled metric for measuring neighbourhood alignment across nodes and use this
to improve embedding induction performance.
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Théo Trouillon, Johannes Welbl, Sebastian Riedel, Éric Gaussier, and Guillaume Bouchard.
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9. Appendix

9.1 The Energy and Loss functions we use in our model

Table 8: The Energy and Loss functions we use in our model

Embedding
Method

Energy Function (E ) Loss Function (L )

TransE E (h, r, t) = ||h+ r − t||2 L =
∑

(h,r,t)∈T

∑
(h◦,r◦,t◦)∈T corr

[α+ E (h, r, t)− E (h◦, r◦, t◦)]+

DistMult E (h, r, t) = 〈h, r, t〉 L =
∑

(h,r,t)∈T ◦
log(1 + exp(−Ih,r,tE (h, r, t)))

ComplEx E (h, r, t) = Re(〈h, r, t〉) L =
∑

(h,r,t)∈T ◦
log(1 + exp(−Ih,r,tE (h, r, t)))

9.2 Comparing properties of open-world KG completion methods

Table 9: The properties of different open-world KG completion methods

DKRL JointE ConMask OWE FOlK

Embedding X X X
Joint X X X X
Efficient ranking X X X X
Modular X X
Sequence size aware X

9.3 Loss Terms — Intuition

Figure 3: The probability contour plots for ĥ, r̂ and t̂ are shown in green. Fig. (a) depicts
the variance around t using only t̂ as an estimate. Fig. (b) depicts the variance around t
using only ĥ+ r̂ as an estimate. Fig. (c) depicts the variance around t using an average of
the two as the true estimate.

We explain why we need additional loss terms when they seem to enforce the same objective
as Lproj . We argue that in a stochastic setting, the three loss terms’ summation gives us the
lowest variance estimate of the ideal embeddings. The reasoning is along the same lines as
how bagging reduces model variance as long as the errors are uncorrelated. We explain the
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intuition behind this through Fig. 3 and demonstrate the effectiveness of the cross-domain
tasks empirically in Table 6.

Let’s consider for simplicity, the translational framework of TransE. Consider three
embeddings - ĥ, r̂, t̂ normally distributed around the ideal embeddings - h, r, t with ap-
proximately equal diagonal variance σ2. During training we’d like to align the projected
embedding tail to the ideal tail embedding t. If we minimise Lproj on its own we use t̂
as an estimate of t, resulting in a variance of σ2 around the true tail. Similarly using LX

gives us a variance of 2σ2. Averaging the two estimates, i.e. minimising LX + Lproj gives
us the lowest variance - 3/4σ2 (follows from the addition of uncorrelated gaussian random
variables), provided ĥ+ r̂ and t̂ are uncorrelated. We observe that this is the case empiri-
cally. The mean absolute correlation between any two dimensions of the two vectors starts
off at 0.02 and tapers off at 0.07

9.4 Structural Embeddings — Hyperparameters

We use pre-trained structural embeddings as an initialization for FOlK(l). For this, we
only perform a hyperparameter search on ComplEx. Our hyperparameter choice here is
based on the best MRR performance on the closed-world validation set and so, can be com-
puted efficiently using fast KG embedding libraries like OpenKE5. For many popular KG
datasets and embedding models, these values are publically available. We don’t finetune
these parameters to improve open-world performance. For training ComplEx embeddings,
as recommended by the original paper we vary the learning rate in {1.0, 0.5, 0.1, 0.05, 0.01},
the number of negative samples in {1,10,100} and λ in {0, 0.1, 1}.

We use 300-dimensional embeddings throughout. We use the same optimal parameters
for FOlK(s). During the training of FOlK(s) and subsequent iterations of phase 1 of FOlK(l),
we reduce the number of negative samples for WN18RR-Open and YAGO3-10-Open to 10
for computational efficiency.

Table 10: Hyperparameter settings for training the structural embeddings of ComplEx on
different datasets.

Dataset Learning Rate # -ve samples λ

WN18RR-Open 0.01 100 1
FB15k-237-OWE 0.03 1 0
YAGO3-10-Open 0.05 100 0.1

We take the optimal hyperparamters for FB15k-237-OWE on ComplEx, DistMult and
TransE from the implementation of OWE. TransE’s margin parameter is set to 1.

Table 11: Hyperparameter setting for different structural models on FB15k-237-OWE

Structural Model Learning Rate # -ve samples λ

TransE 0.1 1 0
DistMult 0.01 1 0
ComplEx 0.03 1 0

5. https://github.com/thunlp/OpenKE
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9.5 Closed-World Performance:

The closed-world KG completion performance of FOlK compared to the performance of
the base KG embedding method, ComplEx is presented in Tables 3 and 12. Rather than
affecting closed-world performance, joint training elicits an average MRR improvement of
5%. We observe that this improvement is largely due to entities missing key relations in
the KG. Training jointly with descriptions acts as a regularizer, ensuring these entities are
embedded in correct local neighbourhoods, despite the missing relations.

Table 12: Performance on closed-world KG completion compared with our base KG em-
bedding model, ComplEx. All of the datasets in this comparison have long descriptions.

YAGO3-10-Open WN18RR-Open FB15k-237-OWE(L)
Model MRR H@1 H@3 H@10 MRR H@1 H@3 H@10 MRR H@1 H@3 H@10

ComplEx 40.4 31.8 45.0 57.2 48.5 45.8 50.0 53.5 35.6 24.3 41.2 57.3
FOlK(l) iter. 2 41.2 32.3 46.2 60.8 50.4 45.5 50.4 55.6 37.6 27.5 43.6 59.3

9.6 Geometric Properties

To analyse the geometric properties for alignment across structure embedding space and
projected embedding space, we conduct experiments along the lines of Ormazabal et al.
[Ormazabal et al., 2019]. We calculate two metrics – eigen value similarity and hubness.
We centre and normalise both the structural embeddings and the projected embeddings. We
contruct graph laplacians for the two spaces and identify k1 and k2, the minimum number
of eigen values that account for 90% of the sum of all eigen values in either space. We then
calculate the average squared difference between the top min(k1, k2) eigen values between
the two spaces. Hubness is the minimum % of induced embeddings that are the nearest
neighbours to at least N% of structural embeddings. We report hubness at 10%. A larger
value indicates lower hubness which is preferable.

Table 13: Comparing the geometric properties of joint and offline methods. We use ↑ to
indicate that a higher value is better and vice-versa. We use FOlK(s) for FB15k-237-OWE
and FOlK(l) for FB15k-237-OWE(L)

FB15k-237-OWE FB15k-237-OWE(L)

Eig. Sim.↓ Hub. 10%↑ Eig. Sim.↓ Hub. 10%↑

OWE (Offline) 998 0.2 34981 0.3
FOlK (Joint) 15.3 1.3 1.5 0.8
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9.7 Ranking Performance
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Figure 4: Time taken to rank triplets
by ConMask and FOlK(l) across
various datasets.
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