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Abstract
Most real-world knowledge graphs are characterized by a frequency distribution with a long-tail

where a significant fraction of relations occurs only a handful of times. This observation has given
rise to recent interest in low-shot learning methods that are able to generalize from only a few
examples per relation. The existing approaches, however, are tailored to static knowledge graphs and
do not easily generalize to temporal settings, where data scarcity poses even bigger problems, e.g.,
due to occurrence of new, previously unseen relations. We address this shortcoming by proposing
a one-shot learning framework for link prediction in temporal knowledge graphs. Our proposed
method employs a self-attention mechanism to effectively encode temporal interactions between
entities, and a network to compute a similarity score between a given query and a (one-shot) example.
Our experiments show that the proposed algorithm outperforms the state of the art baselines for two
well-studied benchmarks while achieving significantly better performance for sparse relations.

1. Introduction

Knowledge graphs (KGs) provide a principled way of representing factual information and have
become a crucial component for performing various Natural Language Processing (NLP) tasks,
including cross-lingual translation [Wang et al., 2018], Q&A [Yao and Van Durme, 2014] and
information retrieval [Dietz et al., 2018]. Semantic KGs such as YAGO [Kasneci et al., 2009]
and WikiData [Vrandečić and Krötzsch, 2014] store facts as collections of triples in the form of
(subject entity, relation, object entity), while Temporal Knowledge Graphs (TKGs) contain events
presented as quadruples (subject entity, relation, object entity, t), where t is a time-labeling of
the edges, that associates punctual dates to the occurrence of the interactions between the entities.
Despite development of advanced extraction techniques, KGs are typically incomplete, which limits
the performance and range of KG-based applications. Recent research has focused on developing
methods for predicting missing facts/events for static KGs [Trouillon et al., 2016, Xiong et al., 2017,
Chen et al., 2018] and TKGs [Garcia-Duran et al., 2018, Xu et al., 2019, Wu et al., 2020].

Most existing KG completion methods rely on a sufficiently large number of training examples
per relation. However, most real-world KGs have a long-tail structure, i.e, many relations occur
only a handful of times. The data scarcity issue is exacerbated for temporal graphs, since the
dynamics governing the evolution of those graphs might be highly non-stationary. First, new types
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Figure 1: The highly heterogeneous distribution of occurrences for three relations with different
frequency over ICEWS Jan 2017-Jan 2019.

of relations/events might emerge that have not been observed before. Furthermore, even if a given
relation has been observed frequently over some time interval, the distribution of occurrences over
that interval might be highly inhomogeneous and bursty. Figure 1 shows that such non-stationarities
exist for relations with different frequencies.

To alleviate this issue for static KGs, several recent studies have focused on adopting Few-Shot
Learning (FSL) methods for KG reasoning under the condition that only a few triples (shots) are
available for each relation. Xiong et al. 2018 and follow-up works [Chen et al., 2019, Wang et al.,
2019a,b] aim to generate a similarity score to infer true entity pairs (subject, object) given the set of
few training entity pairs for each relation. They obtain a representation for each entity pair through an
encoder that aggregates the information from local neighborhood structure of each entity. However,
FSL methods developed for static KGs are not adequate in temporal settings. Indeed, while data
scarcity makes it even more imperative to consider temporal dependencies between events, existing
static encoders designed for FSL methods [Xiong et al., 2018, Zhang et al., 2020, Du et al., 2019] are
not able to incorporate such temporal dependencies that often contain crucial insights.

We address the above shortcomings of static FSL methods and propose One-shot Attention Tem-
poral Graph Learning (OAT) for predicting new events for unseen relations and unseen timestamps in
TKGs when there is only one training example for each relation. Our model can effectively encode
an entity’s interactions with others from ` previous times and capture the temporal dependencies
between entities. It leverages a self-attention mechanism that sequentially aggregates an entity’s
neighborhood over time and extracts a time-aware representation for each entity. Furthermore, our
model employs few-shot episodic training [Vinyals et al., 2016] to learn a similarity metric between
a training entity pair and a given query entity pair, which indicates the likelihood of a given relation
between the query entity pair. Unlike other existing TKG methods [Garcia-Duran et al., 2018, Jin
et al., 2019], our model is able to predict future occurrences of a new relation type based on one
training example, and without the need to fine-tune parameters to accommodate the new relation
type. We also propose a new time-dependent approach to sample the training batch, and show its
effectiveness over the random approach. Finally, we use past information to predict links in the future.
Thus, it is capable of extrapolation, e.g., given the graph upto time t0, inferring links for timestamps
t > t0, which is not addressed in previous TKG completion studies. This helps to populate the KG
for future timestamps which could be of potential benefit for various applications.

Our contributions are as follows: (1) We formulate one-shot learning for TKGs, which improves
upon existing low-shot techniques for static graphs, (2) We propose a temporal neighborhood encoder
with a self-attention mechanism that effectively extracts the temporally-resolved neighborhood
information for each entity, (3) We conduct experiments on two real-world datasets and demonstrate
the superiority of the proposed model over state-of-the-art baselines, and (4) We construct two new
publicly-available benchmarks for one-shot learning over TKGs.

2



MINIMIZING CONFLICTS: A HEURISTIC REPAIR METHOD

2. Related Work

Our work is related to representation learning for temporal relational graphs, low-shot learning
methods, and recent developments of meta-learning approaches for graphs.
Low-Shot Learning. An effective approach for low-shot learning is based on learning a similarity
metric and a ranking function using training triples [Koch et al., 2015, Vinyals et al., 2016, Snell et al.,
2017, Mishra et al., 2018]. Siamese networks [Koch et al., 2015] use a pairwise loss to learn a metric
between input representations in an embedding space and then use the learned metric to perform
nearest-neighbors separately. Matching networks [Vinyals et al., 2016] learn a function to embed
input features in a low-dimensional space and then use cosine similarity in a kernel for classification.
Prototypical networks [Snell et al., 2017] compute a prototype for each class in an embedding space
and then classify an input using the distance to the prototypes in the embedding. SNAIL [Mishra
et al., 2018] uses temporal convolution to aggregate information from past experiences and causal
attention layers to select important information from past experiences. Another paradigm of low-shot
learning includes optimization-based approaches that usually include a neural network to control
and optimize the parameters of the main network. One example is MAML [Finn et al., 2017] which
learns how to generalize with only a few examples for gradient updates.
Relation Learning for TKGs. TKG completion methods can be broadly categorized into translation-
based methods, and evolving methods, based on their approach in encoding time information. The
first category [Leblay and Chekol, 2018, Garcia-Duran et al., 2018, Dasgupta et al., 2018, Wang and
Li, 2019, Jain et al., 2020] considers a distinct lower dimensional space such as a vector [Leblay and
Chekol, 2018, Jain et al., 2020] or a hyperplane [Dasgupta et al., 2018, Wang and Li, 2019] for the
event timestamps and defines a function to map an initial embedding to a time-aware embedding.

Evolving models assume a dynamic representation for entities or relations that is being updated
over time. Such dynamics can be captured by a shallow encoder [Xu et al., 2019, Han et al., 2020a]
or a sequential neural network [Trivedi et al., 2017, Jin et al., 2019, Wu et al., 2020, Zhu et al., 2020,
Han et al., 2020b,c]. Xu et al. 2019 model the entities & relations as timeseries, and decompose the
timeseries into three components using adaptive timeseries decomposition. DyERNIE [Han et al.,
2020a] proposes a non-Euclidean embedding approach in the hyperbolic space. Trivedi et. al. 2017
represents events as the point processes, and Jin et. al. [Jin et al., 2019] aggregates the one-hop entity
neighborhood at each timestamp by a pooling layer, and passes it to an RNN.
Low-shot Learning for Graphs. Metric based FSL models for graphs [Xiong et al., 2018, Chen
et al., 2019, Zhang et al., 2020] adopt few-shot episodic training proposed by Vinyals et al. 2016
for few-shot link prediction over new unseen relations. In contrast, Beck et al. 2020 propose a FSL
framework to address the unseen entities. These methods are usually composed of two components
(i) an encoder that maps the support set to a low dimensional embedding, and (ii) a similarity network
to compute the similarity score between the support set representation and a query.

Xiong et. al. 2018, Du et. al. 2019, and Zhang et. al. 2020 learn a representation for entities
from their one-hop neighborhood. [Xiong et al., 2018] assumes that all the neighbors contribute
equally, while Zhang et. al. 2020 assigns an attention weight to each neighbor. Sheng et.al. 2020
define a similarity score between a relation and the task relation and allows the neighborhood encoder
to be dynamically adaptive to the task. MetaR [Chen et al., 2019] does not consider neighborhood
interactions explicitly, and embeds a pair (s, o) independently using L fully connected layers. Qin
et.al. 2020 studies zero-shot learning for relations using a generative adversarial network, where
the generator tries to generate relations embeddings from text descriptions that are similar to the
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real embeddings. [Wang et al., 2019b, Baek et al., 2020] focus on rare or unseen entities; Wang
et. al. 2019b addresses this issue by incorporating entities textual description into the model. They
further improve the performance by generating triples during training. Baek et.al. 2020 leverage the
episodic training framework, but unlike previous methods, a task is associated with an entity. Unlike
similarity-based approaches [Lv et al., 2019, Wang et al., 2019a] adopt the optimization-based
meta-learning proposed in MAML [Finn et al., 2017]. The core of these approaches is to learn a
parameter θ∗ which can later be used as a good initialization for a new unseen task, and the model
can be adapted to the new task with only a few gradient update steps. These approaches all assume a
static graph. To the best of our knowledge, we are the first to study one-shot learning for TKGs.

3. Problem Formulation

In this section, we present the formal definition of the one-shot link prediction problem for TKGs.

3.1 Temporal Knowledge Graph Completion

A TKG is a collection of events represented as a set of quadruples G = {(s, r, o, t)|s, o ∈ E , r ∈ R},
where E andR are the set of entities and relations, and t is the event timestamp. Static KG completion
involves predicting new facts by inferring either a relation r between two existing entities s and o, or
predicting the object entity o given the subject entity s and a relation r. In this work, we are interested
in the later, but at a particular timestamp t. More formally, given an object query (s, r, ?, t) and a set
of candidates C, the goal is to assign a likelihood to each entity, such that the true object entity is
ranked higher than the other candidates in C. The likelihood is estimated by a scoring function P ,
usually parameterized by a neural network. We assume that the likelihood of an event depends not
only on the current state of the graph, but also on the history of events from previous ` timesteps
{t− `, . . . , t− 2, t− 1}. In Section 4.1 we explain how to encode events’ temporal information.

3.2 Few-shot Learning and Episodic Training

Generally, FSL focuses on building and training a model with only a few labeled instances for each
class. Episodic training is a meta-learning framework for FSL proposed by Vinyals et al. 2016 and
involves learning a model over a large set of tasks. Intuitively, each episode can be considered as a
mini-training procedure with a training and a test set denoted as support and query set, respectively.
At each iteration (episode), the training and test sets are sampled independently and an objective
function lθ is calculated over the test set. The goal is to learn a meta-model that maps a given
(possibly unseen) support set to a model that performs effectively for the given query set. More
specifically, assume we have a large set of tasks T = {Ti = (Si,Qi)}Ni=1 where Si and Qi are the
support and query set of task Ti, the probabilistic optimization objective for this problem is given as:

θ = argmax
θ

ETi∼T
[
ESi∼Ti,Qi∼Ti

[
lθ(Qi|Si)

]]
. (1)

We adopt the standard episodic training framework in Eq. (1) for the purpose of TKG completion.

3.3 One-shot TKG Setup

As mentioned earlier, data scarcity is even a bigger problem in relational learning with TKGs. Few-
shot episodic training has been proven to be effective to tackle this problem for static KGs [Xiong
et al., 2018]. We further extend the framework proposed by Xiong et al. 2018 for TKG completion.
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Figure 2: (a) The query set is selected from (ti, ti+w], with ti being the reference example timestamp
in the support set(b) There is no time overlap between quadruples in validation and test.

Given a TKG, G = {(s, r, o, t)|s, o ∈ E , r ∈ R}, the relations inR are divided into two groups
based on their frequency: frequent relations F and sparse relations T . The sparse relations are used
to build the task set needed by the model for the episodic training. Each task corresponds to a relation
r ∈ T with its own training (support) and test (query) set, i.e. Tr = (Sr,Qr) where Sr includes one
reference entity pair at a specific time and Qr is a set of query entity pairs, formally defined as:

Sr = {(s0, o0, t0)|(s0, r, o0, t0) ∈ G}, Qr = {(sq, oq, tq)|(sq, r, oq, tq) ∈ G} (2)

Given a relation r ∈ T and its reference set Sr, one-shot TKG completion is to complete a given
query (sq, r, oq, tq) where the object entity oq ∈ E is missing. At each episode, a relation r is selected
randomly along with a quadruple containing that relation to form the support set. The query set can
be selected in two ways: (i) Random: We randomly select m positive quadruples containing r from
all the quadruples in G (ii) Time dependent: The quadruples of the query set are restricted by their
distance from the support set timestamp. More specifically, if the support quadruple timestamp is τ
the time-dependent query set Qτr is defined as:

Qτr = {(sq, r, oq, tq)|sq, oq ∈ E , tq ∈ Iτ} (3)

where Iτ = (τ, τ +w] and the w is called the episode length. Figure 2a illustrates the time constraint
for selecting the query quadruples. Sampling procedure for the support and query set are provided in
Section 4.3. The loss function lθ at each episode optimizes a score function Pθ such that it assigns a
higher score to the true query events than the other events. Pθ represents the similarity of a given
query and the support set, and is proportional the event likelihood. The final optimization loss is:

L = Er∼T
[
EQτr∼G,Sτr∼G

[
lθ(Qτr |Sτr )

]]
(4)

The relations in T are divided into mutually exclusive sets: Tmeta−train, Tmeta−test, Tmeta−val.
From this, Gtrain is defined as Gtrain = {(s, r, o, t)|r ∈ Tmeta−train}, with Gval and Gtest defined
similarly. We do not allow any time overlap between the quadruples in Gtrain, Gval and Gtest since
we are doing extrapolation and we do not want any information from the future timestamps to be given
to the model. Figure 2b depicts the time split for Gtrain, Gval and Gtest. Finally, we assume that the
model has access to a background knowledge graph defined as G′ = {(s, r, o, t)|s, o ∈ E , r ∈ F},
and the entity set E is a closed set, i.e., there are no unseen entities during the inference time.

4. Model

Our key idea is to represent a relation r by the entity pair in their support set Sr = {(s0, o0, t0)}. The
similarity score Pθ((sq, oq, tq), Sr) between a query (sq, oq, tq) and the support set representation
determines the likelihood of the event (sq, r, oq, tq) . For any task Tr (even unseen during the
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Figure 3: The main components of our model: (a) Temporal neighborhood encoder comprised of
a snapshot encoder fη and the Att modules. N(t−`), . . . , ...,N(t−2),N(t−1) represent the one-hob
neighborhood of the node at time (t− `) to (t− 1), given to the snapshot encoder fη as input. The
Att module produces a sequence of time-aware representation z(t−`), . . . , z(t−1) aggregated by W ∗

to obtain the final representation; (b) Similarity score is computed via the inner product.

training), this enables the model to predict the likelihood of a given query event for relation r, as long
as one reference example (s0, o0, t0) ∈ Sr is given to the model during the inference. To achieve the
aforementioned goal, we propose a model that is built upon two steps: (i) obtaining the representation
for the support set and query entity pairs, and (ii) computing the similarity of the support set and a
query instance. Our model consists of two main components (Figure 3), as follows:
Neighborhood Encoder. The neighborhood encoder represents the neighborhood information of
a given entity e as a d-dimensional vector he. It encodes an entity’s one-hop neighborhood in the
graph during the previous ` timesteps as a sequence. In Section 4.1 we explain the detail of obtaining
a test query and support set representation via the encoder.
Similarity Network. A similarity function parameterized by a neural network, Pθ((sq, oq, tq), Sr),
that outputs a scalar similarity score between a query pair (sq, oq, tq), and the support set Sr. The
similarity score indicates the likelihood of the query event (sq, r, oq, tq).

4.1 Neighborhood Encoder

For a given entity e, we defineNτ (e) = {(rj , ej)|(e, rj , ej , τ) ∈ G′} to be the one-hop neighborhood
of e at time τ , and e’s temporal neighborhoodN(e) is the set of all e’s interactions within the previous
` timestamps, i.e. N (e) =

⋃
τ∈[t−`,t−1]Nτ (e). The neighborhood encoder is comprised of two parts:

(i) function fη that encodes the one-hop neighborhood at a given timestamp τ , and (ii) function g,
that utilizes the output of function fη, at previous timesteps, to generate a temporal neighborhood
representation. Any pooling layer can be selected for fη and g, however, we show that the model can
significantly benefit from the use of a sequential model as g.

4.1.1 SNAPSHOT AGGREGATION.

The snapshot aggregator fη aggregates local neighborhood information at a specific time τ .

fη(Nτ (e)) = σ(
1

Ceτ

∑
(rj ,ej)∈Nτ (e)

(W>[vrj : vej ] + b)), xeτ = [fη(Nτ (e)) : ve], (5)
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where Ceτ is a normalizing factor, vej ∈ Rd×1, vrj ∈ Rd×1are entity and relation representations,
and W ∈ R2d×d and b ∈ Rd×1 are model parameters to be learnt. The concatenation is shown as [:]
and σ(.) is a nonlinear activation function (Relu in our implementation).

4.1.2 SEQUENTIAL AGGREGATION

Function g aggregates the sequence of snapshots from previous l timesteps {t− `, . . . , t− 2, t− 1}.
To effectively capture the temporal dependencies between the timestamps, we use a sequential neural
network. The sequential encoder employs the self-attention mechanism proposed in [Vaswani et al.,
2017]. The core of the encoder is a layer denoted as Att, and is made up of two sublayers:
Attention sublayer projects the input sequence to a query and a set of key-value vectors.

MultiHead(Q,K, V ) = [head1 : ... : headh]W
O, headi = Attention(QWQ

i ,KW
K
i , V W

V
i ) (6)

where WQ
i ∈ Rdmodel×dk , WK

i ∈ Rdmodel×dk , W V
i ∈ Rdmodel×dv , WO ∈ Rhdv×dmodel are

parameter matrices, and dmodel is the input embedding dimension (dmodel = 2d in our case).
Position wise sublayer is a fully connected feed-forward network, applied to each sequence position
separately and identically.

The Att(x, nhead, nlayer) takes as input the neighborhood snapshots’ representations x =
[xet−`, . . . , x

e
t−1], the number of layers, and number of attention heads, and maps input sequence

x to a time-aware sequence output ze = Att(x, nhead, nlayer), where ze = [zet−`, . . . , z
e
t−1] and

zeτ ∈ R2d×1, ∀t− ` ≤ τ ≤ t− 1. Finally the temporal representation for e at time t is obtained by:

he = σ([zet−` : · · · : zet−1]W ∗), (7)

where W ∗ ∈ R2d×dout is a parameter matrix, [:] is concatenation and σ(.) is a nonlinear activation
function (Relu in our implementation).

4.2 Similarity Network

Using the neighborhood encoder, any pair of subject and object at a given time (s, o, t) can be
represented with a vector [hs : vs : ho : vo], where hs and ho are the temporal representations
obtained from the neighborhood encoder, and vs and vo are the subject and object embeddings. Given
the reference entity pair (s0, o0, t0) for a relation r, we learn the representation for similarity from
the support and the query entity pair by two layers of fully connected layers:

x(1) = σ(W (1)x+ b(1)), x(2) =W (2)x(1) + b(2),M(x) = x(2) + x. (8)

The similarity score between the reference entity pair and a given query entity pair (sq, oq, tq) defined
as score =M(s)>M(q), where s = [hs0 : vs0 : ho0 : vo0 ] and q = [hsq : vsq : hoq : voq ]. We use
the dot product to output a similarity score between the support and query pair that corresponds to
the likelihood of sq and oq being connected with r at time tq.

4.3 Loss Function and Training

For a given relation r and its support set Sr = {(s0, o0, t0)}, we have a set of positive quadruples
(Q+

r ) and construct the negative pairs (Q−r ) by polluting the subject or object entities for each positive
quadruple and the final query set is Qr = Q−r

⋃
Q+
r . We want the positive quadruples to be close to
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Algorithm 1
Input: T (meta training relations); G′ (back-
ground TKG); w (episode length); nshots (number
of shots); ∀r,Ar = {(si, r, oi, ti)} (ti are sorted);
for i = 1, 2, . . . N do

Shuffle relations in T
Sample relation r from T
Sr,Qr ← MAKETASK(r, w,Ar, nshots)
Sample B+ from Qr and make B−

L ← max(score− − score+λ, 0)
θ ← θ −∇L

return θ

function MAKETASK(r, w,Ar, nshots)
i ∼ Uniform(1, |Ar|)
Sr ← {Ar[i]}
limit← w + ti
while tj < limit do

Add Ar[j] to Qr
j ← j + 1

return Sr, Qr

the support set’s final representation and the negatives to be as far as possible. The objective function
is a hinge loss, defined as L = max(score− − score+ + λ, 0).

The score+ and score− are similarity scores calculated over Q+
r and Q−r . We employ episodic

training over the task set T to optimize the loss function. Algorithm 1 summarizes the the episodic
training algorithm and the time dependent selection to construct the query set.

5. Experimental Validation

We evaluate our model on predicting new events for a relation by predicting the object entity (s, r, ?, t)
and conduct qualitative and quantitative experiments to validate the model.

5.1 Datasets

We use two datasets: Integrated Crisis Early Warning System (ICEWS) [Boschee et al., 2015]
and Global Database of Events, Language, and Tone (GDELT) [Leetaru and Schrodt, 2013].

Dataset # Ents # Rels # Tasks # Quads

ICEWS14 3735 196 66/5/15 9793
ICEWS17 2419 153 66/5/14 7535
GDELT 1549 204 50/5/14 10420

Table 1: Dataset statistics for ICEWS17(2017-
2019), ICEWS14(2014-2016) and one month
of GDELT (Jan 2018). #Rels include all
the meta relations and background relations,
and #Tasks is the number of relations in
Tmeta−train/Tmeta−val/Tmeta−test.

From ICEWS dataset, we construct ICEWS17
from Jan 2017 to Jan 2019, and ICEWS14 from
Jan 2014 to Jan 2016. We select the relations
with frequency between 50 and 500 for the
one-shot learning tasks and frequency higher
than 500 as the background relations. Our sec-
ond dataset includes one month of GDELT (Jan
2018). The low and high frequency thresholds
for selecting tasks and background relations are
50 and 700, respectively, for the GDELT dataset.
The rest of the dataset pre-processing is the same
for both GDELT and ICEWS. Table 1 shows the
statistics for both datasets.

5.2 Baselines

There is no prior work on one-shot learning for temporal knowledge graphs. Therefore, we propose
two different ways to evaluate our model:
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Training Task 1

Support Set
(US, Fight, Syria, 04-14-18)

Query Set
(Turkey, Fight, Iraq, 07-04-18)
(Israel, Fight, Syria, 05-01-18)
. . .

Training Task 2

Support Set
(US, Consult, Germany, 04-14-17)

Query Set
(India, Consult, Syria, 05-25-18)
(China, Consult, Japan, 01-01-19)
. . .

Test Task 1

Support Set
(Greece, Yield, Spain, 03-16-19)

Query Set
(India, Yield, Yemen, 07-19-19)
(Iraq, Yield, India, 01-29-19)
. . .

(a) Episodic training dataset. Each training/test task is associated with a relation. Test tasks contain relations
and timestamps never seen during the training.

Training Set

Support Set (Training Task 1)
(US, Fight, Syria, 04-14-18)

Support Set (Training Task 2)
(US, Consult, Germany, 04-14-17)

Support Set (Test Task 1)
(Greece, Yield, Spain, 03-16-19)

Test Set

Query Set (Test Task 1)
(India, Yield, Yemen, 07-19-19)
(Iraq, Yield, India, 01-29-19)
. . .

Query Set (Test Task 2)
. . .

(b) Regular training dataset under one-shot condition. Training set contains the quadruples of the support sets
from all the tasks plus the quadruples of the background knowledge graph G′. Test set include the quadruples
of the query sets from the test tasks.

Figure 4: A schematic view of datasets for few-shot methods (a) and regular temporal methods (b).

1. One-shot training of existing TKG models To simulate the one-shot condition, we build
a training dataset by adding all the quadruples of the background knowledge graph and the
quadruples of theGtrain. Per each relation in the Tmeta−test and Tmeta−val, we include exactly
one quadruple into the training set. We test the model on the exact same quadruples from Gtest
(Figure 4) . We used TKG reasoning baseline models: TADistMult [Garcia-Duran et al., 2018],
TTransE [Leblay and Chekol, 2018], ReNet [Jin et al., 2019], and ATiSE [Xu et al., 2019].

2. FSL methods for static graphs: We collapse the temporal training graph into an unweighted
static graph. An edge exists between two entities in the static graph if there is a corresponding
edge in the temporal graph at any time. We use three state of the art static low-shot learning
methods: GMatch [Xiong et al., 2018], FSRL [Zhang et al., 2020], and MetaR [Chen et al.,
2019]. Unlike the first two, MetaR doesn’t incorporate any neighborhood information into its
modeling, meaning that there is no difference between (s, r, o, ti) and (s, r, o, tj) in the test.
In contrast, the one-hop neighborhood information provided for (s, r, o, ti) is different than
(s, r, o, tj) during the test time of GMatch and FSRL.

Discussion. We present the results of our experiments in Table 2, which demonstrates the superiority
of our approach over the baselines. In particular, for GDELT and ICEWS17 datasets, our model
shows the best results according to all metrics, and at times with quite significant margins. For
the ICEWS14 dataset, our model significantly outperforms the baselines according to the Hit@1
and MRR metrics, and is very close to the best methods in Hit@5 and Hit@10 metrics (TATransE
and ReNet, respectively). We believe the superior performance of our model can be attributed to
the episodic training approach, which provides more generalizability compared to the first set of
baselines that use regular training. Our experiments confirm that the performance of TKG-inspired
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GDELT ICEWS17 ICEWS14

Model H@1 H@5 H@10 MRR H@1 H@5 H@10 MRR H@1 H@5 H@10 MRR

TTransE .025 .075 .138 .060 .004 .047 .107 .038 .004 .076 .134 .058
TATransE .062 .200 .362 .151 .084 .238 .418 .168 .000 .377 .489 .175
ATiSE .059 .195 .297 .138 .064 .325 .456 .196 .031 .248 .357 .137
ReNet .064 .191 .319 .146 .126 .289 .407 .209 .000 .339 .542 .164

GMatch .007 .037 .067 .028 .062 .156 .233 .113 .016 .087 .142 .057
FSRL .080 .158 .210 .127 .120 .253 .345 .192 .039 .095 .153 .074
MetaR .003 .235 .293 .115 .044 .172 .244 .112 .067 .292 .421 .178

OAT-R .228 .416 .525 .331 .191 .479 .641 .325 .164 .330 .538 .268
OAT-T .234 .441 .578 .345 .170 .519 .743 .323 .084 .223 .429 .177

Table 2: Hit@K results for one-shot learning on (i) one month of GDELT (Jan 2018) (ii) ICEWS17
from Jan 2017 to Jan 2019), and (iii) ICEWS14 from Jan 2014 to Jan 2016 for relations in Tmeta−test.
“OAT-R” and “OAT-T” correspond to the random and time dependent query set selection method.

baselines are better for frequent relations and deteriorate when evaluated over only sparse relations.
TTransE/TATransE are translation based models which are not able to handle one-to-many/many-to-
one relations, and in general perform poorly on event datasets. Similar to our model, ReNet generates
a time-aware representation for an entity by aggregating the local neighborhood at each timestamp
using a pooling layer and a sequential encoder. In Section B of the Appendix we provide some
insight on why and when the ReNet model outperforms our model.

Although the second set of baselines employ episodic training, these methods still fail to consider
the temporal dependency between events, which is captured effectively by self-attention in our model.
GMatch uses a mean pooling layer to aggregate the entities and edges adjacent to the given entity,
while FSRL uses a weighted mean pooling layer with attention weights. The reason that FSRL works
better than GMatch might be that a part of the temporal information is captured by attention weights.
To summarize, our experiments indicate that combination of both techniques – a self-attention to
encode the temporal neighborhood information and a temporal task definition for episodic training –
is essential for showing improved performance over the baselines.

5.3 Ablation Study

To demonstrate the importance of each component of our model, we conduct multiple ablation studies
that evaluate the model from three main angles: (1) The temporal neighborhood encoder added by
self-attention to the model: We disable the sequential encoder and feed all the neighbors of an entity
in {t − `, . . . , t − 1} to the snapshot function fη, as if they all happened at one timestamp (M1),
shown in Table 3 as “Att”. (2) Query set selection method: According to Section 3.3, it can either be
random or time dependent. “Rand” is checked in Table 3 if the selection method is random, and time
dependent otherwise. (3) We analyze the inner product effectiveness compared to using Matching
Network [Xiong et al., 2018] on the query representation, shown as “MatchNet” in Table 3.

Table 3 summarizes the ablation study’s results, showing that the full pipeline of our proposed
algorithm outperforms the other variations. M1 and M2 demonstrate the effectiveness of a sequential
encoder, since disabling it results a significant performance decline. It is worth noting that adding
MatchNet helps to capture similarity information when the model is simple (M1 and M2). However,

10
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Setting GDELT ICEWS17

Model Att Rand MatchNet H@1 H@10 MRR H@1 H@10 MRR

M1 7 7 7 .045 .225 .114 .060 .558 .197
M2 7 7 .133 .504 .243 .105 .518 .220
M3 .197 .535 .293 .123 .616 .245
M4 7 .169 .491 .265 .138 .654 .269

OAT-R 7 .228 .525 .331 .191 .641 .325
OAT-T 7 7 .234 .578 .345 .170 .743 .323

Table 3: Ablation study on different components of the model (i) one month of GDELT (Jan 2018)
and (ii) two years of ICEWS (Jan 2017 - Jan 2019) for relations in Tmeta−test.

comparing OAT-T/OAT-R with M3 and M4 shows that, due to the data scarcity, adding MatchNet
will lead to model overparameterization and decreased performance, while self-attention is powerful
enough to learn a representation that captures not only the temporal dependencies but also a similarity
space that enables accurate prediction.

5.4 Performance Over Different Relations

We conduct experiments to evaluate the model performance for each relation separately. Table 4 in
Section B of the appendix shows the decomposed results on ICEWS17 test set by OAT-T and ReNet,
sorted by their frequency. It shows that in most relations (11 out of 14) OAT-T outperforms ReNet.
Section B of the appendix include further discussion and detail of the experiments.

6. Conclusion and Future Work

We introduce a novel one-shot learning framework for temporal knowledge graphs to address the
problem of sparse relations in those graphs. Our model employs a self-attention mechanism to
sequentially encode temporal dependencies among the entities, as well as a similarity network
for assessing the similarity between a query and an example. Our experiments demonstrate that
the proposed method outperforms existing state-of-the-art baselines in predicting new events for
infrequent relations. In future work, we would like to generalize the current one-shot learning to
a few-shot scenario. Another direction is extending our framework to handle emergent entities, a
challenge since new entities will have fewer interactions and thus sparser neighborhood information.
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Appendix A. Attention Encoder Details

The Attention function used in Equation 6 to calculate the attention score is called “Scaled Dot
Product Attention” in [Vaswani et al., 2017] and defined as follows:

Attention(Q,K, V ) = softmax
(QKT

√
dk

)
V (9)

Position wise sublayer is a fully connected feed-forward network, applied to each sequence position
separately and identically.

FFN(xτ ) = max(0, xτW1 + b1)W2 + b2. (10)

In order for the attention model to make use of sequential order, a positional encoding is added
to the input embeddings.

PE(pos,2i) = sin(pos/100002i/dmodel)

PE(pos,2i+1) = cos(pos/100002i/dmodel),
(11)

Where pos is the position and i is the dimension. The purpose of positional encoding is to
introduce to the model the information about relative or absolute position of each element in the
sequence. The positional encoding has similar dimension as dmodel.

Appendix B. Performance Over Different Relations

In this section, we conduct experiments to evaluate the model performance over each relation
separately. Table 4 shows relations in ICEWS test set by performance. Our model struggles on
CAMEO codes “1831” and “1823,” which lie under a higher level CAMEO event “Assault” coded
as “18.” Also, we manually inspected the test examples for “1823,” for which ReNet performs very
well. Our inspection shows that ReNet tends to generate higher ranks for a quadruple (s, r, o, t) if it
has already seen many examples of s, o being paired with any other relations. For example, (ISIS,
1831, Afghanistan) was the test example, and we found 30 matches for (ISIS, 183, Afghanistan)
in the training set. It is worth noting that “1831” is a subcategory of “183” in the CAMEO-code
scheme. This was the case for 4 out of 5 query examples of “1831.” The one query example that
ReNet doesn’t perform well, (ISIS, 1831, Libya), the combination of ISIS and any other Libya
related entities only appeared 7 times in the training data. The rank predicted by our model for this
query is 14, while the ReNet rank is over 1,000. Our model doesn’t use the information from the
edges in the background graph. Although ReNet leverages this information, it could become biased
toward them. Therefore, designing a few-shot model that leverages this information and is able to
generalize well over new edges remains a challenge for future work.

Appendix C. Performance over Time

Figure 5 visualizes the performance of our model over time for ICEWS dataset. Since relations
selected for the task are very sparse, the number of query examples in one unit of time is very small.
So we aggregated every 7 days. The y axis is the time difference between the query timestamp and its
support example timestamp. Figure 5 shows that our model outperforms the best baseline over time.
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Hit@10
CAMEO Code Description Frequency OAT-T ReNet

1044 Demand change in institutions, regime 52 .300 .600
1125 Accuse of espionage, treason 58 .650 .615
1311 Threaten to reduce or stop aid 64 .567 .000
186 Assassinate 71 .533 .250
1831 Carry out suicide bombing 97 .450 .800
1122 Accuse of human rights abuses 121 .757 .667
011 Decline comment 128 .600 .000
0313 Express intent to cooperate on judicial matters) 130 .656 .579
1823 Kill by physical assault 143 .133 .286
1721 Impose restrictions on political freedoms 225 .600 .133
0312 Express intent to cooperate militarily 273 .800 .714
063 Engage in judicial cooperation 283 .688 .364
0333 Express intent to provide humanitarian aid 292 .612 .353
0332 Express intent to provide military aid 348 .785 .463

Table 4: Hit@10 reported separately for each relation in the test tasks for ReNet and OAT.

Appendix D. Hyperparameters and Implementation Detail

We select the relations with frequency between 50 and 500 for the one-shot learning tasks and
frequency higher than 500 as the background relations for ICEWS dataset. The low and high
frequency thresholds for selecting tasks and background relations are 50 and 700, respectively, for
the GDELT dataset.The threshold for choosing the sparse relations should be selected such that the
sparsity is preserved and also, we have enough data for training the model. We have selected the
exact threshold values based on the prior work [Xiong et al., 2018] which also is based on the above
rationale. GDELT is less sparse than ICEWS, so we increased the upper threshold to increase the
number of tasks for the training.
We use a manual tuning approach to select the model hyperparameters, during which we keep all the
parameters constant except one and we run the model with the selected hyperparameters 5 times and
select the best model over the validation set using MRR metric.
The episode length w chosen to construct the datasets for one-shot learning from GDELT and ICEWS
is 120 time units (e.g. 120 days for ICEWS). The history period is 20 days for ICEWS and 10 time
units (every 15 minutes) for GDELT. The embedding size for both datasets is 50. We use one layer of
multi-head attention with 4 heads. Number of heads is selected by hyperparameter search from 1 to 6.
Attention inner dimension is 256. Attention parameters are similar for both datasets. The matching
network performs 3 steps of matching. The loss margin is 10 for ICEWS and 18 for GDELT. We
found out that increasing margin value affects the performance as it is depicted in Figure 6. The
number of parameters for the model with this choice of hyperparameters is 1,380,656 for GDELT
dataset and 1,469,056 for ICEWS. We use Adam optimizer with initial learning rate 0.001.

We implemented our solution using Pytorch. We run all the experiments on a CPU Intel(R)
Xeon(R) Gold 5220 CPU @ 2.20GHz, and 53 GBs of memory. The eval function in
trainer.py includes the details to calculate MRR and Hit@K metrics. The implementation and
the dataset is available at https://github.com/AnonymousForReview
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Appendix E. Model Analysis

In this section we provide more insights on the shortcoming of the existing baselines and the
justification about why our model outperforms these models. We compare our model against two
categories of baselines:
TKG baselines: Regular TKG methods tend to get biased toward the frequent relations. We
conducted some initial experiments to confirm it; We provided a training set containing all the
relations to the model, and evaluated it on all the relations as well as sparse/frequent relations
separately. The model performance (MRR/Hit@K) over all the relations was more close to the
MRR/Hit@K for frequent relations and the MRR/Hit@K for sparse relations was much lower. The
main difference between regular TKG models and our model is the episodic training framework,
which enables our model to generalize well from only one example.

• TTransE/TATransE are translation based models which are not able to handle one-to-
many/many-to-one relations. they map the timestamp in a quadruple (s, r, o, t) into a lower
dimensional space and are not capable of extrapolation (i.e. forecasting the future events).

• ReNet: Same as our model, ReNet generates a time-aware representation for an entity by
aggregating the local neighborhood at each timestamp using a pooling layer and feeding it to an
RNN. In Section B we provide some insight on why and when the ReNet model outperforms
our model.

FSL baselines:The main difference between our model and static FSL models is a temporal neigh-
borhood aggregator. Temporal adjacent events could convey useful information about the events that
will happen in the future and different timestamps can have different effects on future events. The
multi-head self-attention module in our model captures this information. We did some experiments
on history length that indicated that as we increased the history length upto some point, it helped to
improve the model performance.
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• GMatching uses a mean pooling layer to aggregate the entities and edges adjacent to the given
entity.

• FSRL uses a weighted mean pooling layer with attention weights. The reason that FSRL
works better than GMatching might be that a part of the temporal information is captured by
attention weights.

• MetaR does not use the local neighborhood structure for extracting the embedding of a node.

To summarize, our model combines the benefits of both approaches: a self-attention to encode the
temporal neighborhood information and a temporal task definition for episodic training, resulting in
better performance over the baselines.

Appendix F. Data Construction

We provide the details of two newly constructed baselines for one-shot learning over temporal
knowledge graphs. We conducted the following steps over both GDELT and ICEWS dataset:

1. A pre-processing step to deduplicate the dataset records by Source Name (subject), Target
Name (object), CAMEO Code (relation), and Event Date (timestamp).

2. We divide the relations into two groups: frequent and sparse by their frequency of occurrence
in the main dataset. Relations occurring between 50 and 500 in ICEWS, and 70 and 700 for
GDELT are considered “sparse.” Those occurring more than 500 times in ICEWS and more
than 700 times in GDELT are considered frequent.

3. The quadruples of the main dataset are then split into two groups based on their relations.
The quadruples containing frequent relations make background knowledge graph kept in
pretrain.csv, and the quadruples containing sparse relations are kept for meta learning
process (meta quadruples) kept in fewshot.txt

4. From the sparse relations, 5 are selected for meta-validation, 15 for meta-test and rest kept for
meta-training.

5. We split the meta quadruples into meta-train, meta-validation, and meta-test not only based on
their relations, but also based on the non-overlapping time split explained in Figure 2b of the
paper.

Data Format Description

Each constructed dataset contains the following files:

• symbols2id.pkl. A dictionary containing ent2id, rel2id, and dt2id, which are the
mapping from entities, relations and dates to IDs respectively.

• id2symbol.pkl. A reverse mapping from IDs to symbols.

• data2id.csv. A file containing all the quadruples after the deduplication step. The symbols are
represented by their ids.
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• pretrain.csv. Contains the quadruples of the background knowledge graph.

• fewshot.txt. Contains the meta quadruples in text format. Each line is a tab separated
quadruple with the order s, r, o, t.

• meta_train.pkl. A mapping from relations to meta quadruple IDs containing that relation.
A quadruple ID indicates the line number corresponding to that quadruple in fewshot.txt.
meta_test.pkl and meta_val.pkl are also created similarly, using meta-validation and meta-
test relations.

• hist_l_n. A folder containing the entities’ neighborhood information, with a maximum of n
neighbors at each snapshot and history length l. It includes the following files:

– hist_o.pkl. The object neighborhood of meta quadruples in the fewshot.txt. The ith
record corresponds to the quadruple in ith line of fewshot.txt.

– hist_s.pkl. The subject neighborhood of meta quadruples in the fewshot.txt. The ith
record corresponds to the quadruple in ith line of fewshot.txt.

.

19


	Introduction
	Related Work
	Problem Formulation
	Temporal Knowledge Graph Completion
	Few-shot Learning and Episodic Training
	One-shot TKG Setup

	Model
	Neighborhood Encoder
	Snapshot Aggregation.
	Sequential Aggregation

	Similarity Network
	Loss Function and Training

	Experimental Validation
	Datasets
	Baselines
	Ablation Study
	Performance Over Different Relations

	Conclusion and Future Work
	Acknowledgments
	Attention Encoder Details
	Performance Over Different Relations
	Performance over Time
	Hyperparameters and Implementation Detail
	Model Analysis
	Data Construction




