

The Graph Hawkes Neural Network for Forecasting on Temporal Knowledge Graphs

By Zhen Han, Yunpu Ma, Yuyi Wang, Stephan Günnemann, Volker Tresp

Temporal Knowledge Graph (tKG)

$(e_{1,} p_{1,} e_{2})$, $(e_{1,} p_{2,} e_{5})$, $(e_{6,} p_{2,} e_{5})$	$(p_{3,} e_1), (e_{3,} p_{2,} e_2), (e_{3,} p_{3,} e_4)$	
	<u>r</u> t ₁	\xrightarrow{t}

Timeline of a Sequence of Events.

Timeline of a Sequence of Events.

Zhen Han, The Graph Hawkes Neural Network for Forecasting on Temporal Knowledge Graphs, AKBC 2020, June 22th.

Slices of a Discrete-time Temporal Knowledge Graph.

Timeline of a Sequence of Events.

Slices of a Temporal Knowledge Graph.

$(e_{1,} p_{1,} e_{2}), (e_{1,} p_{2,} e_{5}), (e_{6,} p_{3,} e_{1}), (e_{3,} p_{2,} e_{2}), (e_{3,} p_{3,} e_{2})$	(e _{1,} p _{1,} e ₃), (e _{1,}	$(e_{1,} p_{1,} e_{3}), (e_{1,} p_{2,} e_{4}), (e_{1,} p_{2,} e_{5}), (e_{6,} p_{3,} e_{2}), (e_{3,} p_{2,} e_{2})$			
(e ₁ , p ₁ , e ₃), ($(e_{1,} p_{2,} e_{4})$, $(e_{1,} p_{2,} e_{5})$, $(e_{6,} p_{3,} e_{1})$, $(e_{6,} p_{3,} e_{1$	_{3,} p _{1,} e ₂)			
t ₁	t ₂	t ₃			

Timeline of a Sequence of Events.

SIEMENS

Hawkes Process & Neural Hawkes Process

Hawkes Process & Neural Hawkes Process

An Event Stream from the Neural Hawkes Process.

Zhen Han, The Graph Hawkes Neural Network for Forecasting on Temporal Knowledge Graphs, AKBC 2020, June 22th.

SIEMENS

Challenge: Characteristics of Temporal Knowledge Graphs

- Scalability: a huge amount of event types in tKGs.
 - Number of **probable** event types in our tKG dataset: $1.4 \cdot 10^{10}$

(subject, predicate, object)

 $\circ~$ Existing event types in our dataset: $1.2\cdot10^{6}$

Event Sequence Extracted from a Temporal Knowledge Graph

How to improve the scalability of Hawkes process?

• Considering an **object prediction query** (e₁, p₁, ?, t₄).

How to improve the scalability of Hawkes process?

- Considering an **object prediction query** (e₁, p₁, ?, t₄).
- Modelling intensity functions inspired by score functions of KGs

How to improve the scalability of Hawkes process?

- Considering an **object prediction query** (e₁, p₁, ?, t₄).
- Modelling intensity functions inspired by score functions of KGs
- Investigating the influence of the following historical event sequence: $e^{h,sp}(e_1, p_1, t_4) = \{(e_1, p_1, e_3, t_1), (e_1, p_1, e_4, t_1), (e_1, p_1, e_2, t_2), (e_1, p_1, e_4, t_2), (e_1, p_1, e_3, t_3)\}.$

Event Sequence Extracted from a Temporal Knowledge Graph

Neighborhood Aggregation

- Considering an object prediction query (e₁, p₁, ?, t₄).
- Neighborhood Aggregation Module^[1]:

$$g\left(O_{t_1}(e_1, p_2)\right) = \frac{1}{\left|O_{t_1}(e_1, p_2)\right|} (\mathbf{e}_3 + \mathbf{e}_4)$$

= { $\mathbf{e}_3, \mathbf{e}_4$ }
Embedding of the 3-th entity

Embedding of the 3-th entity Embedding of the 4-th entity

Event Sequence Extracted from a Temporal Knowledge Graph

 $g(O_{t1}(e_1, p_2))$

Neighborhood Aggregation

 $O_{t1}(e_1, p_2)$

SIEMENS

Ingenuity for life

Graph Hawkes Process

- Object prediction query $(e_{s_i}, e_{p_i}, ?, t_i)$.
- Hidden state computed by a continuous-time LSTM (cLSTM) network^[3]

 $\mathbf{h}_{sub}\left(\mathbf{e}_{s_{i}}, \mathbf{e}_{p_{i}}, \mathbf{t}_{i}, \mathbf{e}_{i}^{h, sp}\right) = cLSTM\left(\mathbf{e}_{s_{i}}, \mathbf{e}_{p_{i}}, \bigcup_{j=1}^{i} g\left(\mathbf{0}_{t_{j}}(\mathbf{e}_{s_{i}}, \mathbf{e}_{p_{i}})\right)\right)$ Historical event sequence Subject embedding Predicate embedding Neighborhood aggregation module

SIEMENS

Ingenuity for life

Graph Hawkes Process

- Object prediction query $(e_{s_i}, e_{p_i}, ?, t_i)$.
- Hidden state computed by a continuous-time LSTM (cLSTM) network^[3]

Inner product Subject-centric intensity function $\lambda_{sub}\left(e_{o}|e_{s_{i}},e_{p_{i}},t_{i},e_{i}^{h,sp}\right) = f\left(\mathbf{W}_{\lambda}\left(\mathbf{e}_{s_{i}} \oplus \mathbf{W}_{h}\mathbf{h}_{sub}\left(e_{s_{i}},e_{p_{i}},t_{i},e_{i}^{h,sp}\right) \oplus \mathbf{e}_{p_{i}}\right) \stackrel{\checkmark}{\leftarrow} \mathbf{e}_{o}\right)$ Object embedding Historical event sequence Subject embedding Hidden state vector Predicate embedding

Link Prediction Task

• Consider an object prediction query $(e_{s_i}, e_{p_i}, ?, t_i)$ and the corresponding $e_i^{h,sp}$.

• Choose the object candidate with the highest intensity.

Time Prediction Task

• Given a time prediction query $(e_{s_i}, e_{p_i}, e_{o_i}, t = ?)$ for t > t_L

Last occurrence time of the given event type

Time Prediction Task

Computing conditional probability density that the given event type (e_{si}, e_{pi}, e_{oi}) occurs at time t based on the survival analysis theory:

$$p(t|e_{s_{i}}, e_{p_{i}}, e_{o_{i}}, e_{i}^{h, sp}, e_{i}^{h, op}) = \lambda_{t} \left(e_{s_{i}}, e_{p_{i}}, e_{o_{i}}, t, e_{i}^{h, sp}, e_{i}^{h, op} \right) exp \left(-\int_{t_{L}}^{t} \lambda_{t} \left(e_{s_{i}}, e_{p_{i}}, e_{o_{i}}, \tau, e_{i}^{h, sp}, e_{i}^{h, op} \right) d\tau \right)$$
Intensity function Historical event sequences Last occurrence time of the given event type

Last occurrence time of the given event type

Time Prediction Task

• Given a time prediction query $(e_{s_i}, e_{p_i}, e_{o_i}, t = ?)$ for t > $t_{L_{x_i}}$

Computing conditional probability density that the given event type (e_{si}, e_{pi}, e_{oi}) occurs at time t based on the survival analysis theory:

$$p(t|e_{s_{i}}, e_{p_{i}}, e_{o_{i}}, e_{i}^{h, sp}, e_{i}^{h, op}) = \lambda_{t} \left(e_{s_{i}}, e_{p_{i}}, e_{o_{i}}, t, e_{i}^{h, sp}, e_{i}^{h, op} \right) exp \left(-\int_{t_{L}}^{t} \lambda_{t} \left(e_{s_{i}}, e_{p_{i}}, e_{o_{i}}, \tau, e_{i}^{h, sp}, e_{i}^{h, op} \right) d\tau \right)$$
Intensity function Historical event sequences Last occurrence time of the given event type

• The expectation of the next happening time:

$$\widehat{t}_{i} = \int_{t_{L}}^{\bowtie} \tau \cdot p(\tau | e_{s_{i}}, e_{p_{i}}, e_{o_{i}}, e_{i}^{h, sp}, e_{i}^{h, op}) d\tau$$
Last occurrence time of the given event type Probability density function Historical event sequences

Last occurrence time of the given event type

Datasets	GDELT – filtered				ICEWS14 – filtered			
Models	MRR	Hits@1	Hits@3	Hits@10	MRR	Hits@1	Hits@3	Hits@10
T-TransE	5.45	0.44	4.89	15.10	7.15	1.39	6.91	18.93
TA-TransE	9.57	0.00	12.51	27.91	11.35	0.00	15.23	34.25
TA-Dismult	10.28	4.87	10.29	20.43	10.73	4.86	10.86	22.52
LITSEE	6.64	0.00	8.10	18.72	6.45	0.00	7.00	19.40
GHN	23.55	15.66	25.51	38.92	28.71	19.82	31.59	46.47

Table 1: Link prediction results: Mean Reciprocal Rank (MRR, %) and Hits@1/3/10 (%).

How to Fairly Compare the Time Prediction Performance?

Our model (GHN) is nontrivial for time prediction.

Experimental Results - Time Prediction

MAE on the GDELT Dataset (hours)

Zhen Han, The Graph Hawkes Neural Network for Forecasting on Temporal Knowledge Graphs, AKBC 2020, June 22th.

Applications

Integrated conflict early warning

Supporting clinical decisions in terms of personalized healthcare

Conclusion

• Solving the challenge of massive event types.

- Proposing the Graph Hawkes Process for forecasting on temporal knowledge graphs.
- Define new evaluation metrics on temporal knowledge graph reasoning tasks.

Conclusion

• Solving the challenge of massive event types.

• Define new evaluation metrics on temporal knowledge graph reasoning tasks.

Future Work

- Enabling induction on new nodes.
- Explainability.

SIEMENS

Ingenuity for life

Thank you!

Link to our paper: https://openreview.net/forum?id=kXVazet_cB

Reference

[1] Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs. In Advances in Neural Information Processing Systems, pages 1024–1034, 2017.

[2] Alan G Hawkes. Spectra of some self-exciting and mutually exciting point processes. Biometrika, 58(1):83-90, 1971.

[3] Hongyuan Mei and Jason Eisner. The Neural Hawkes Process: A Neurally Self-Modulating Multivariate Point Process. In Advances in Neural Information Processing Systems, 2017.

[4] Woojeong Jin and Changlin Zhang and Pedro Szekely and Xiang Ren. Recurrent Event Network for Reasoning over Temporal Knowledge Graphs. arXiv preprint arXiv:1904.05530, 2019.

[5] M. S. Schlichtkrull, T. N. Kipf, P. Bloem, R. van den Berg, I. Titov, and M. Welling. Modeling relational data with graph convolutional networks. In *ESWC*, 2018.

[6] Rakshit Trivedi, Hanjun Dai, Yichen Wang, and Le Song. Know-Evolve: Deep temporal reasoning for dynamic knowledge graphs. In Proceedings of the 34th International Conference on Machine Learning, ICML 2017, Sydney, NSW, Australia, 6-11 August 2017, pp. 3462–3471, 2017.

[7] Odd Aalen, Ornulf Borgan, and Hakon Gjessing. Survival and event history analysis: a process point of view. Springer Science & Business Media, 2008.