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Motivation: Language Modeling for Entity-Relation Chains

e Similar Power-Law distribution between vertices in graphs and words in natural
language [Perozzi et al., 2014]
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e Deep Contextualized Word Embeddings from language models [Peters et al., 2018]
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Visualization: Contextualized Knowledge Graph Embeddings
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Dolores Component 1: Path Generator

e Random Walk on the Graph
o p: the likelihood of immediately revisiting
a node
o Q: the likelihood that a walk is biased
towards nodes close to starting node
o 20 chains for each node
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o length of each chain: 21 (10 entities and
11 relations alternatively, k = 10)



Dolores Component 2: Embedding Learner

e Network Architecture

Target: Bach nationality Germany location_contains Leipzig location_contains
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hii = | h—t;, 7;1 ] corresponds to the context-dependent embeddings from layer i

\i’s denote task-specific learnable weights of the linear combination



Extracting Dolores Embeddings & Evaluation Results

e Training the Dolores Learner using chains from Path Generator

e Accepting task corpus as the input to Dolores Learner, and generate contextualized
embedding for each entity/relation in the task corpus

e Ultilize the embedding as the input of embedding layers of task-specific models

e Results on three KBC tasks:

o  Link Prediction: FB15K237
o Triple Classification: WN11, FB13
o  Multi-hop KB Completion: dataset released by Neelakantan et al. [2015]

DoroREs- INCREASE
TASK BASELINE (ABSOLUTE/

BASELINE

RELATIVE)

Link Prediction (head) [Nguyen et al., 2018b]  15.7 18.7 3.0 / 3.56%
Link Prediction (tail) [Nguyen et al., 2018b]  32.8 37.2 4.4 /6.55%
Triple Classification [Nguyen et al., 2018b]  87.00 87.55 0.55 / 4.23%
Multi-hop KB Completion [Yin et al., 2018] 76.16 78.28 2.12 / 8.9%




Conclusion

e We present a new method of learning deep contextualized knowledge graph
embeddings using a deep neural sequential model.

e These embeddings are functions of hidden states of the deep neural model
and can capture both context-independent and context-dependent cues.

e We show empirically that Dolores can easily be incorporated into existing
predictive models on knowledge graphs to advance performances on several
tasks like link prediction, triple classification, and multi-hop knowledge base
completion.



