

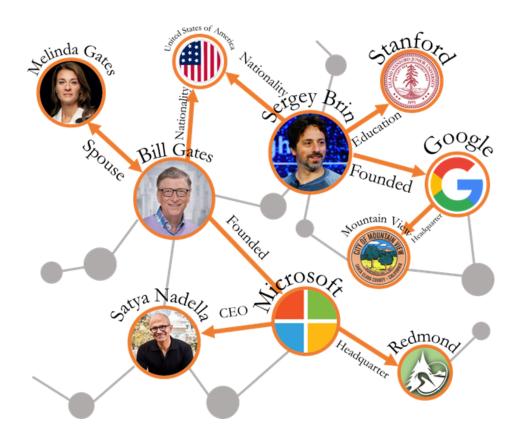
Learning Relation Entailment with Structured and Textual Information

Zhengbao Jiang¹, Jun Araki², Donghan Yu¹, Ruohong Zhang¹, Wei Xu³, Yiming Yang¹, Graham Neubig¹

Carnegie Mellon University¹, Bosch Research North America², Ohio State University³ zhengbaj@cs.cmu.edu

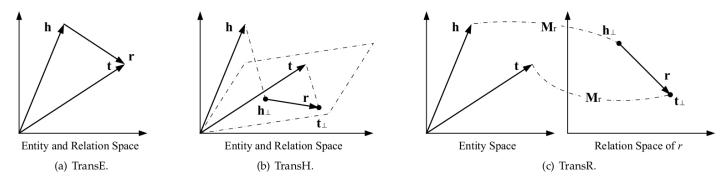
Motivation

• Relations among entities play a fundamental role in knowledge graphs.



Motivation

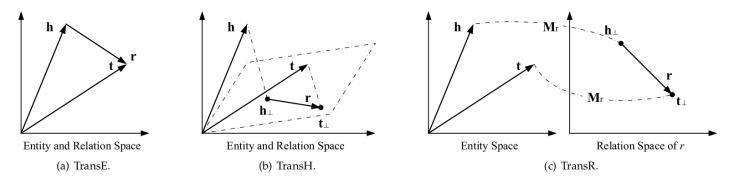
• However, relations are treated as independent.



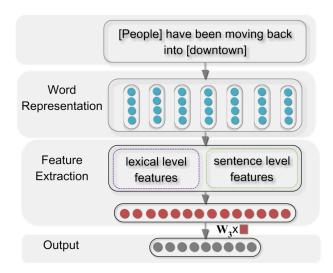
KG embedding: each relation is treated as an atomic unit with separate parameters.

Motivation

• However, relations are treated as independent.



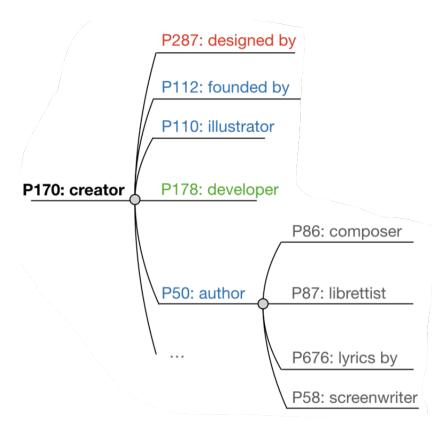
KG embedding: each relation is treated as an atomic unit with separate parameters.



Relation extraction: each relation is an independent class.

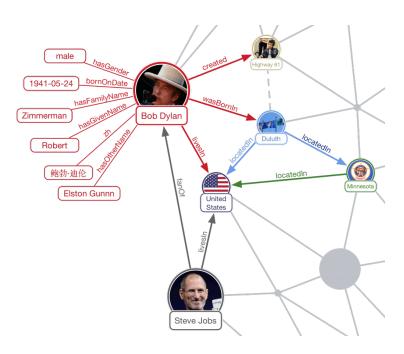
Meta-relation: Relations Between Relations

• Relation entailment: existence of one relation can entail the existence of another relation.



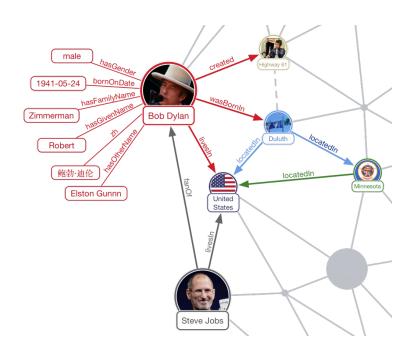
Applications of Relation Entailment

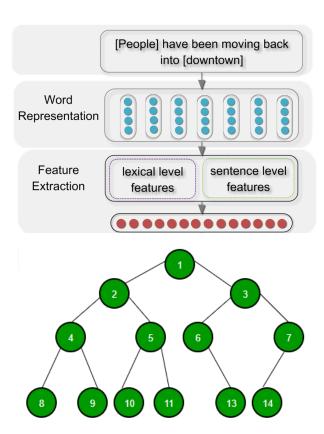
• Knowledge graph representation learning.



Applications of Relation Entailment

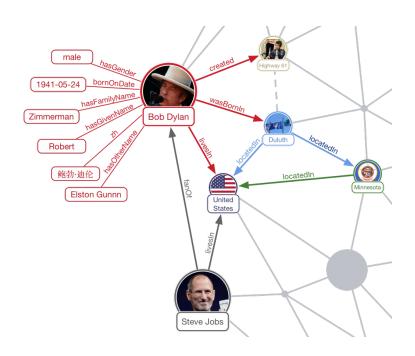
- Knowledge graph representation learning.
- Relation extraction.

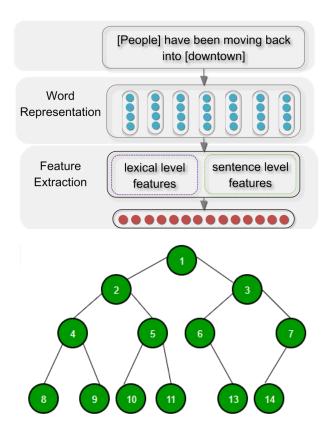


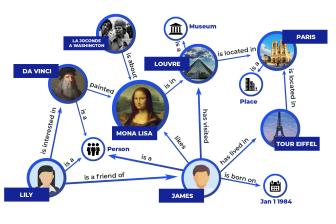


Applications of Relation Entailment

- Knowledge graph representation learning.
- Relation extraction.
- KG-based question answering.

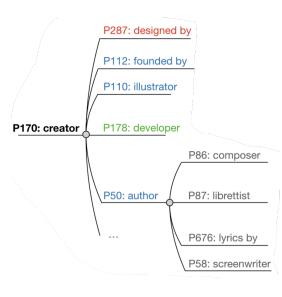




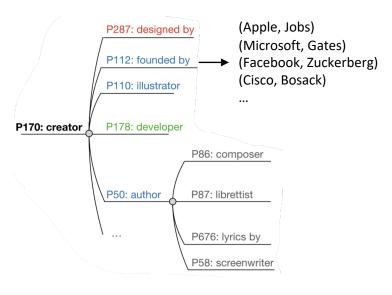


Relation Entailment Task Definition

- Notations
 - Head and tail entities $h, t \in \mathcal{E}$.
 - Relations $r \in \mathcal{R}$.
 - Instances of a relation $C_r = \{(h, r, t)^{(i)}\}_i$.
- Relation entailment
 - $r \models r'$ if and only if $C_r \subseteq C_{r'}$.
- Task of predicting relation entailment
 - Given a relation r, choose its (direct) parent $r' \in \mathcal{L}$.
 - A $|\mathcal{L}|$ -way multi-class classification problem.

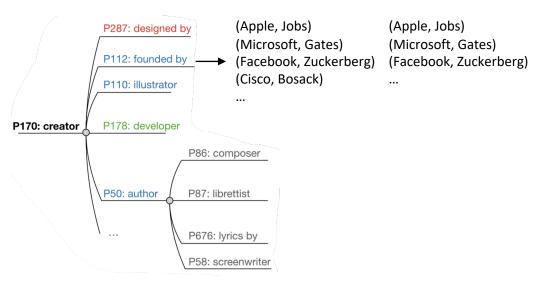


1. Instances collection



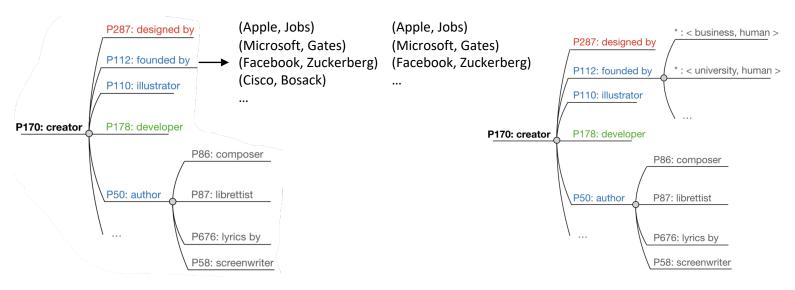
1. Instances collection

2. Downsampling



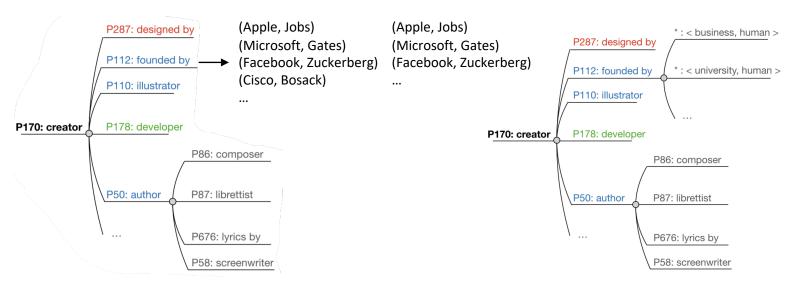
1. Instances collection

2. Downsampling 3. Relation expansion



1. Instances collection

2. Downsampling 3. Relation expansion



parent	Sub-relations
parent organization	<pre><laboratory, university="">, <airline, airline="">, <record label="" label,="" record="">,</record></airline,></laboratory,></pre>
architectural style	<railway architectural="" station,="" style="">, <church, architectural="" style="">,</church,></railway>
award received	<film, academy="" awards="">, <human, campaign="" medal="">, <human, scholarship="">,</human,></human,></film,>

1. Instances collection 2. Downsampling 3. Relation expansion 4. Entity linking

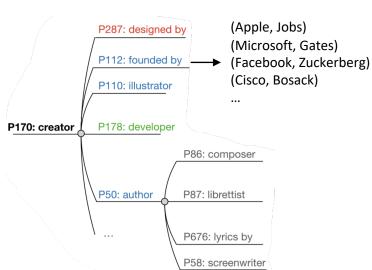


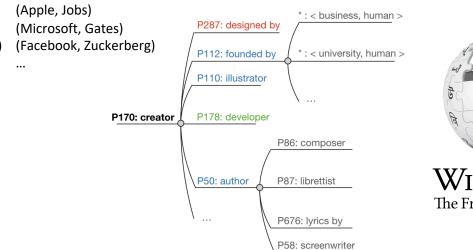
parent	Sub-relations
parent organization	<pre><laboratory, university="">, <airline, airline="">, <record label="" label,="" record="">,</record></airline,></laboratory,></pre>
architectural style	<railway architectural="" station,="" style="">, <church, architectural="" style="">,</church,></railway>
award received	<film, academy="" awards="">, <human, campaign="" medal="">, <human, scholarship="">,</human,></human,></film,>

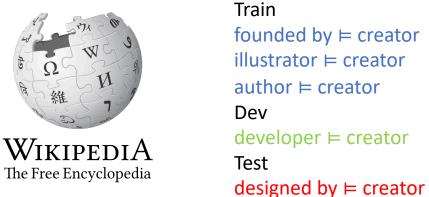
1. Instances collection

2. Downsampling 3. Relation expansion 4. Entity linking

5. Train/dev/test split

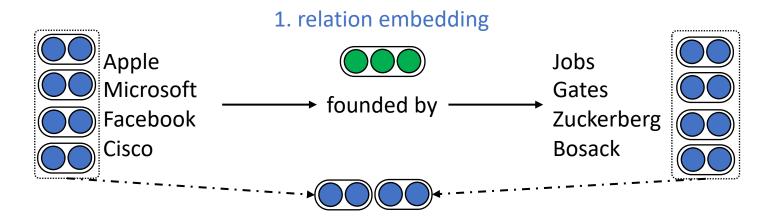




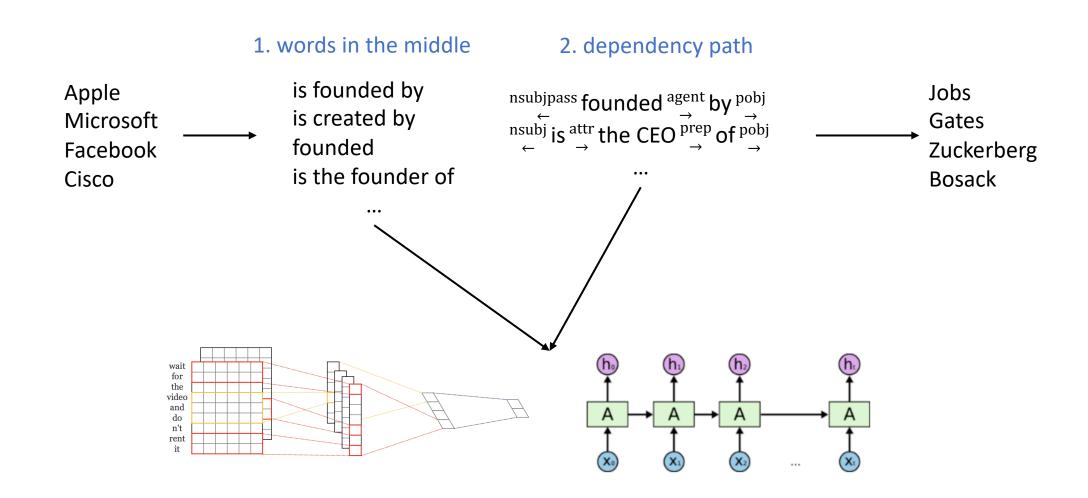


parent	Sub-relations
parent organization	<laboratory, university="">, <airline, airline="">, <record label="" label,="" record="">,</record></airline,></laboratory,>
architectural style	<railway architectural="" station,="" style="">, <church, architectural="" style="">,</church,></railway>
award received	<film, academy="" awards="">, <human, campaign="" medal="">, <human, scholarship="">,</human,></human,></film,>

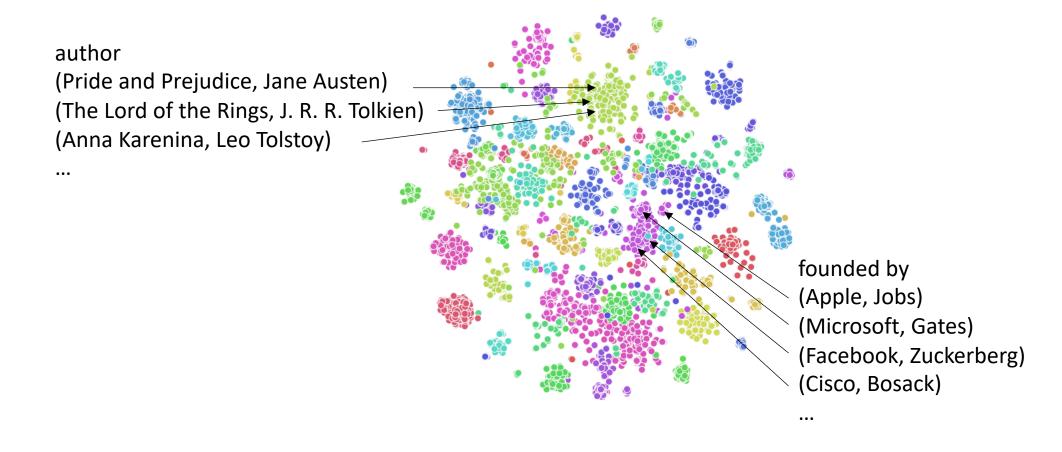
• With structured information



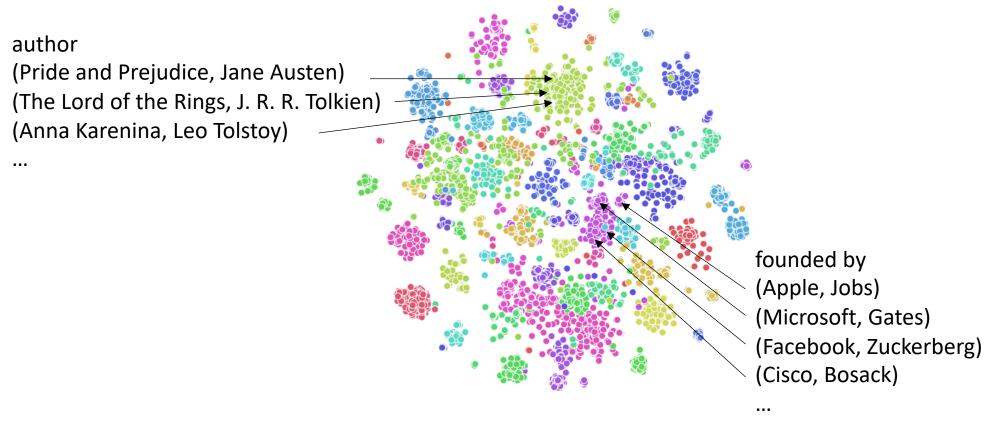
With textual information



• Distribution-based



• Distribution-based



Kernel density estimation with a Gaussian kernel

Relation Entailment Prediction

cos(**()**, Unsupervised methods Supervised methods

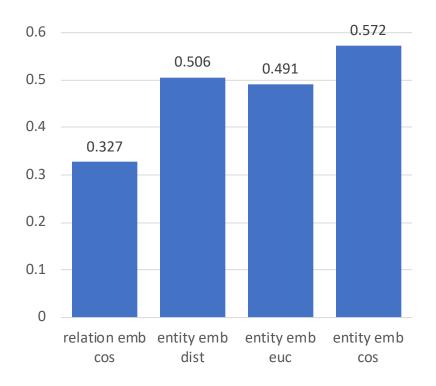
Experimental Settings

- RelEnt Dataset
 - #Train, #Dev., #Test relations: 2055, 804, 692
 - #Classes: 498

- Evaluation Metrics
 - Accuracy@1, Accuracy@3, and mean reciprocal rank (MRR)

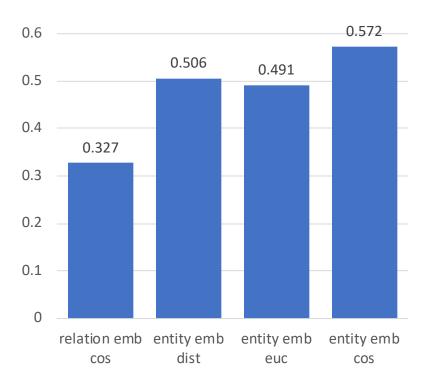
- Implementation Details
 - KG embedding methods: TransE, DistMult, ComplEx.
 - 50-dimensional GloVe embeddings.
 - BiLSTM with 64 hidden units, CNN with window size of 3 and 64 filters.

Unsupervised Methods' Results

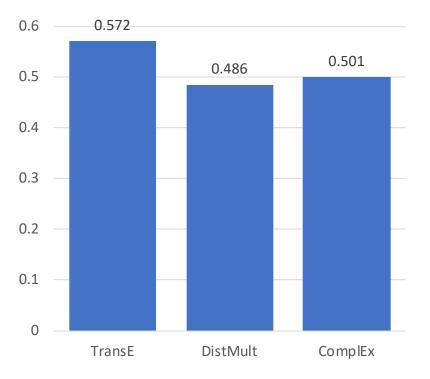


Acc@1 of different unsupervised methods with TransE.

Unsupervised Methods' Results



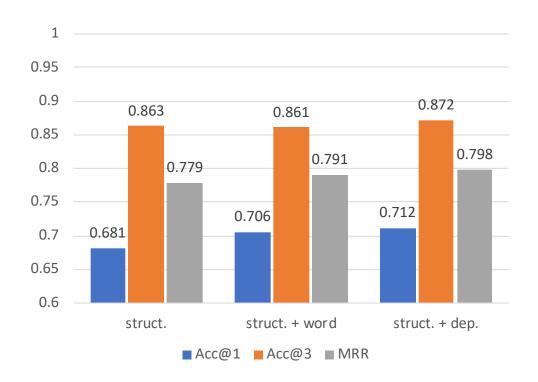
Acc@1 of different unsupervised methods with TransE.



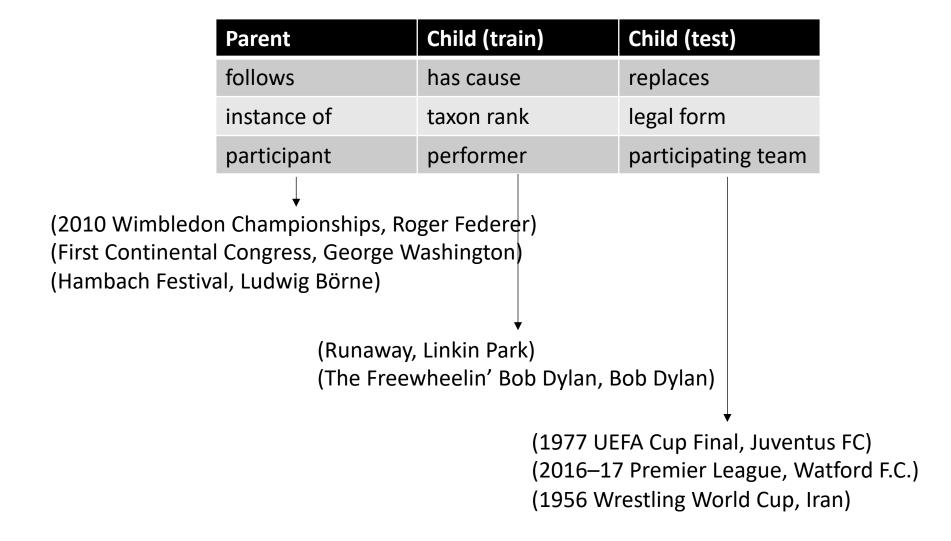
Acc@1 of entity embedding with cosine using different KG representations.

Supervised Methods' Results

- Supervised > unsupervised.
- Textual information is complementary to structured information.



Error cases



Take away

- 1. Both structured and textual information contribute to relation entailment prediction.
- 2. Relation entailment prediction requires high-level abstraction.

Paper: https://openreview.net/pdf?id=ToTf MX7Vn

Code: https://github.com/jzbjyb/RelEnt