UMassAmherst

College of Information & Computer Sciences

Representing Joint Hierarchies with Box Embeddings

Dhruvesh Patel*, Shib Sankar Dasgupta*, Michael Boratko, Xiang Li, Luke Vilnis, Andrew McCallum

Hierarchies and Box Embeddings

- > Hierarchies are composed of **transitive** and **asymmetric** relations
- > Box embeddings can naturally represent such relations using containment

Joint Hierarchies

$$\begin{split} \mathrm{IsA}(a,b) \wedge \mathrm{HasPart}(b,c) \Rightarrow \mathrm{HasPart}(a,c) \\ \mathrm{IsA}(a,b) \wedge \mathrm{HasPart}(c,a) \Rightarrow \mathrm{HasPart}(c,b) \end{split}$$

Joint Hierarchies

Has-Part and Is-A Box for each Entity

$$\operatorname{Vol}(\alpha \cap \beta) := \prod \operatorname{softplus}_t(\min(\alpha_{M,i}, \beta_{M,i}) - \max(\alpha_{m,i}, \beta_{m,i}))$$

$$L = \sum_{i}^{N} -y_{i} \log p_{i} - (1 - y_{i}) \log(1 - p_{i})$$

- Using Volume Penalty
 - Penalize when size of box is greater than a fixed volume

Regularization loss

Individual Hierarchies: Datasets

	Transitive Closure	Transitive Reduction	Validation (pos:neg)	$\begin{array}{c} \text{Test} \\ \text{(pos:neg)} \end{array}$
Hypernym Meronym	84363 9678	$661127 \\ 30333$	28838/288380 5164/51640	$28838/288380 \\5164/51640$

- Hypernym graph is more tree like.
- Meronym is less tree like:
 - contains a lot of connected components and
 - nodes with multiple parents.

Individual Hierarchies : Results

	Hypernym			Meronym				
Transitive Closure Edges	0%	10%	25%	50%	0%	10%	25%	50%
Order Embedding	43.0%	69.7%	79.4%	84.1%	69.7%	74.1%	77.3%	81.0%
Poincaré Embedding	28.9%	71.4%	82.0%	85.3%	44.7%	73.6%	84.9%	88.0%
Hyperbolic Entailment Cones	32.2%	85.9%	91.0%	94.4%	49.70%	83.2%	88.4%	92.8%
Box Embeddings (w/o regularization)	45.4%	72.6%	81.5%	89.2%	83.4%	87.2%	88.7%	92.6%
Box Embeddings (Our Method)	$\mathbf{60.2\%}$	90.0%	$\boldsymbol{92.7\%}$	$\boldsymbol{94.7\%}$	80.1%	$\mathbf{91.4\%}$	93.8 %	94.3 %

- The F1 score of binary classification on the unseen test edges with a fixed set of random negatives.
- The hierarchies are modelled separately.

Joint Hierarchy: Results

Embedding Model	F1 score	Hypernym(Organ)	Hypernym HasPart (IsA) (Type1)
Poincaré Embeddings	43.80%		Implied Meronym HasPart (HasPart) (Type2)
Hyperbolic Entailment Cones	44.00%	Organ	
TransE	57%	2	5
ComplEx	60.61%	Eye	Person
Order Embeddings	$\mathbf{68.50\%}$		
Box embeddings	68.10%		8 Man
			Hyponym (Man)

• F1 score of binary classification on the test edges of the Joint Hierarchy (all the red edges in the figure) with a fixed set of random negatives.

Conclusion

- We show that the regularized box embeddings can **learn to represent a tree-like hierarchical relation** graph with far fewer edges from the transitive closure.
- We also show that the box embeddings are not restricted to strictly tree-like structures.
- We propose a method to **model multiple hierarchical relations** jointly in a single embedding space.
- In all cases, our proposed method outperforms or is at par with all other embedding methods.

*Source code and processed data : <u>https://github.com/iesl/Boxes_for_Joint_hierarchy_AKBC_2020</u>