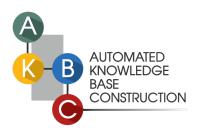
Enriching Large-Scale Eventuality Knowledge Graph with Entailment Relations

Changlong Yu¹, Hongming Zhang¹, Yangqiu Song^{1,2}, Wilfred Ng¹, Lifeng Shang³



¹The Hong Kong University of Science and Technology

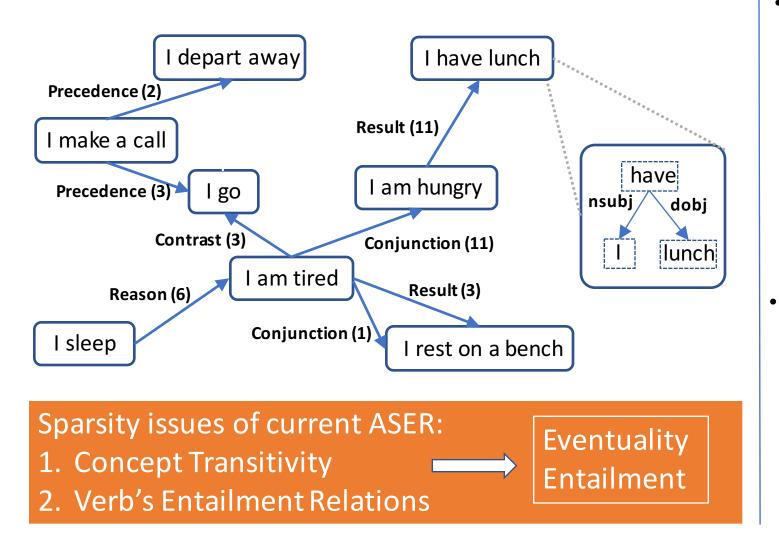
²Peng Cheng Laboratory

³Huawei Noah's Ark Lab

Outline

- 1. ASER: Eventuality Knowledge Graph
- 2. Entailment Graph
- 3. Three-step Construction Method
- 4. Evaluation and Potential Applications

ASER: Eventuality Knowledge Graph



• Eventuality Node: 194 Million mined from 14 linguistic patterns.

n1-nsubj-dobj -n2	I have lunch
n1-nsubj-v1	l sleep
n1-nsubj-a1-cop-be	I am hungry
n1-nsubj-v1-nmod- n2-case-p1	I rest on a bench

Eventuality Relations: 64 Million with 14 discourse relations.

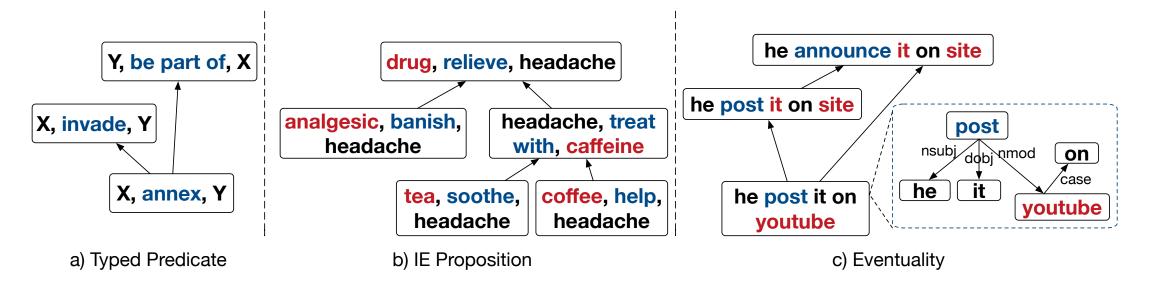
.....

.....

Precedence Result Reason Contrast Conjunction before/then/till so/thus/therefore because but/however and/also

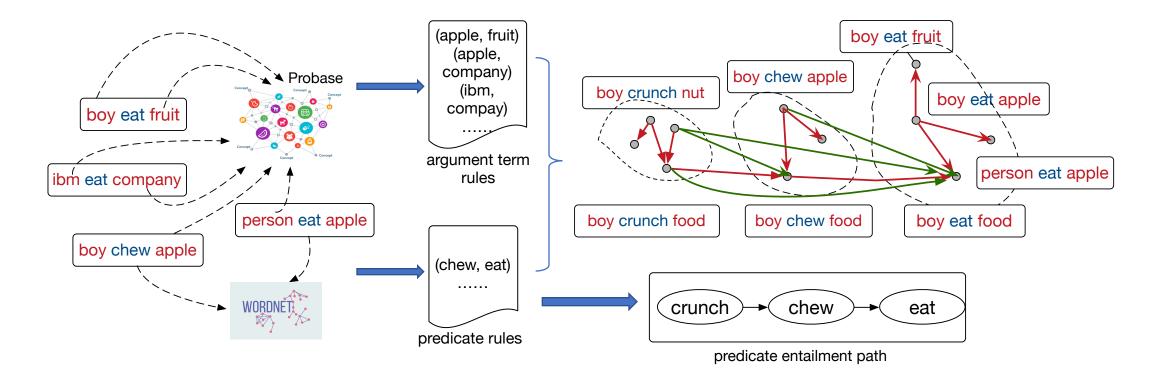
Hongming Zhang*, Xin Liu*, Haojie Pan*, Yangqiu Song, and Cane Wing-Ki Leung. ASER: A Large-scale Eventuality Knowledge Graph. WWW. 2020.

Eventuality Entailment Graph



Node Type	Reference	#Graphs	#Nodes	#Edges	Domain
Typed Predicate	Berant et al., ACL, 2011 Hosseini et al. TACL, 2018	2,303 363	10,672 101K	263,756 66M	Place/disease News
Open IE Proposition	Levy et al., CoNLL, 2014	30	5,714	1.5M	Healthcare
Textual Fragment	Kotlerman et al., NLE, 2015	457	756	7,862	Email
Eventuality	Ours	473	10M	103M	Commonsense

Three-step Construction Method



Step1 : Eventuality Pre-processing

Step2 : Compositional Local Inference

Step3 : Global Inference Along Predicate Entailment Path

Evaluation and Result

For each type of the eventuality entailment, random sample 100 rules to ask five workers for annotation in the Amazon MTurk platform.

		# Eventuality	# ER(global)	# ER(local)	Acc (local)	Acc (all)
Γ	$s-v \models s-v$	3.3M	$32.7\mathrm{M}$	10.7M	89.1%	85.7%
	$s-v-o \models s-v-o$	5.3M	$45.2\mathrm{M}$	14.8M	90.1%	89.3%
Activities/	$s-v-p-o \models s-v-p-o$	$1.9 \mathrm{M}$	$12.6\mathrm{M}$	$5.3\mathrm{M}$	88.3%	87.4%
Events 🚽	$s-v-o-p-o \models s-v-o$	0.5M	$0.8\mathrm{M}$	$0.8\mathrm{M}$	91.4%	90.0%
	$s-v-p-o \models s-v-o$	1.1M	$2.7\mathrm{M}$	$0.9 \mathrm{M}$	88.5%	87.2%
	$s-v-o \models s-v-p-o$	0.9M	$5.4\mathrm{M}$	$2.2\mathrm{M}$	87.8%	86.7%
Ĺ	$s-v-o-p-o \models s-v-o-p-o$	$2.4\mathrm{M}$	$3.2\mathrm{M}$	$2.1\mathrm{M}$	89.4%	88.4%
Г	$s-v-a \models s-be-a$	0.2M	$0.1\mathrm{M}$	0.1M	97.9%	97.9%
States –	s -be-a-p-o \vDash s -be-a	0.8M	$0.4 \mathrm{M}$	$0.4\mathrm{M}$	96.0%	95.8%
	s-be-a-p-o \models s-be-a-p-o	$0.1\mathrm{M}$	$0.1\mathrm{M}$	$0.1\mathrm{M}$	95.1%	94.7%
	Overall	$10.0 \mathrm{M}^{*}$	$103.2 \mathrm{M}$	37.4M	91.4%	90.3%

- The global inference step increased the scale of entailment rules by averagely three times.
- Moreover the global inference does not lead to heavy drop of the performance, which proves the effectiveness of our method.

Potential Applications and Conclusion

- Enhance TransOMCS¹: Provide ASER with more powerful inference ability and generate more reliable commonsense knowledge.
- Testbed for Probing Tasks²: Whether QA models / pretrained language models have taxonomic reasoning ability.
- External Rule Base³: Provide large-scale explicit general knowledge for complementing implicit reasoning.

Large Scale Eventuality Entailment Graph with 10M nodes and 103M relations. Our resources and code are at:

https://github.com/HKUST-KnowComp/ASER-EEG

<u>Hongming Zhang</u>, <u>Daniel Khashabi</u>, <u>Yangqiu Song</u>, and <u>Dan Roth</u>. TransOMCS: From Linguistic Graphs to Commonsense Knowledge. IJCAI. 2020
<u>Kyle Richardson</u>, and <u>Ashish Sabharwal</u>. What Does My QA Model Know? Devising Controlled Probes using Expert Knowledge. Arxiv 2020
<u>Peter Clark</u>, <u>Oyvind Tafjord</u>, <u>Kyle Richardson</u>. Transformers as Soft Reasoners over Language. IJCAI 2020