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Abstract

Knowledge Graphs (KG), composed of entities and relations, provide a structured
representation of knowledge. For easy access to statistical approaches on relational data,
multiple methods to embed a KG into f(KG) ∈ Rd have been introduced. We propose
TransINT, a novel and interpretable KG embedding method that isomorphically preserves
the implication ordering among relations in the embedding space. Given implication rules,
TransINT maps sets of entities (tied by a relation) to continuous sets of vectors that are
inclusion-ordered isomorphically to relation implications. With a novel parameter sharing
scheme, TransINT enables automatic training on missing but implied facts without rule
grounding. On two benchmark datasets, we outperform the best existing state-of-the-art
rule integration embedding methods with significant margins in link prediction and triple
classification. The angles between the continuous sets embedded by TransINT provide an
interpretable way to mine semantic relatedness and implication rules among relations.

1. Introduction

Learning distributed vector representations of multi-relational knowledge is an active area
of research [Bordes et al., 2013, Nickel et al., 2011, Kazemi and Poole, 2018a, Wang et al.,
2014, Bordes et al., 2011]. These methods map components of a KG (entities and relations)
to elements of Rdand capture statistical patterns, regarding vectors close in distance as
representing similar concepts. One focus of current research is to bring logical rules to
KG embeddings [Guo et al., 2016, Wang et al., 2015a, Wei et al., 2015]. While existing
methods impose hard geometric constraints and embed asymmetric orderings of knowledge
[Nickel and Kiela, 2017, Vendrov et al., 2015, Vilnis et al., 2018], many of them only embed
hierarchy (unary Is a relations), and cannot embed binary or n-ary relations in KG’s. On the
other hand, other methods that integrate binary and n-ary rules [Guo et al., 2016, Fatemi
et al., 2018, Rocktäschel et al., 2015, Demeester et al., 2016] do not bring significant enough
performance gains.

We propose TransINT, a new and extremely powerful KG embedding method that
isomorphically preserves the implication ordering among relations in the embedding space.
Given pre-defined implication rules, TransINT restricts entities tied by a relation to be
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embedded to vectors in a particular region of Rd included isomorphically to the order of
relation implication. For example, we map any entities tied by is father of to vectors in a
region that is part of the region for is parent of; thus, we can automatically know that if
John is a father of Tom, he is also his parent even if such a fact is missing in the KG. Such
embeddings are constructed by sharing and rank-ordering the basis of the linear subspaces
where the vectors are required to belong.

Mathematically, a relation can be viewed as sets of entities tied by a constraint [Stoll,
1979]. We take such a view on KG’s, since it gives consistency and interpretability to model
behavior. We show that angles between embedded relation sets can identify semantic patterns
and implication rules - an extension of the line of thought as in word/ image embedding
methods such as Mikolov et al. [2013], Frome et al. [2013] to relational embedding.

The main contributions of our work are: (1) A novel KG embedding such that implication
rules in the original KG are guaranteed to unconditionally, not approximately, hold. (2)
Our model suggests possibilities of learning semantic relatedness between groups of objects.
(3) We significantly outperform state-of-the-art rule integration embedding methods, [Guo
et al., 2016] and [Fatemi et al., 2018], on two benchmark datasets, FB122 and NELL Sport/
Location.

Figure 1: Two equivalent ways of expressing relations. (a): relations defined in a hypothetical KG.
(b): relations defined in a set-theoretic perspective (Definition 1). Because is father of ⇒ is parent of,
the set for is father of is a subset of that for is parent of (Definition 2).

2. TransINT

In this section, we describe the intuition and justification of our method. We first define
relation as sets, and revisit TransH [Wang et al., 2014] as mapping relations to sets in
Rd. Finally, we propose TransINT. We put ∗ next to definitions and theorems we propose/
introduce. Otherwise, we use existing definitions and cite them.

2.1 Sets as Relations

We define relations as sets and implication as inclusion of sets, as in set-theoretic logic.

Definition (Relation Set): Let ri be a binary relation and x, y entities. Then, a set Ri such
that ri(x, y) if and only if (x, y) ∈ Ri always exists [Stoll, 1979]. We call Ri the relation
set of ri.

For example, consider the distinct relations in Figure 1a, and their corresponding sets in
Figure 1b; Is Father Of(Tom, Harry) is equivalent to (Tom, Harry) ∈ RIs Father Of.
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Definition (Logical Implication): For two relations, r1 implies r2 (or r1 ⇒ r2) iff ∀x, y,

(x, y) ∈ R1 ⇒ (x, y) ∈ R2 or equivalently, R1 ⊂ R2.[Stoll, 1979]

For example, Is Father Of ⇒ Is Parent Of. (In Figure 1b, RIs Father Of ⊂ RIs Parent Of ).

Figure 2: Two perspectives of viweing TransH in R3; order of operations can be flipped. (The
orange dot is the origin, to emphasize that translated vectors are equivalent.) (a): projection first,

then difference - first projecting
#»

h and
#»
t onto His parent of , and then requiring

#  »

h⊥ + #»rj ≈
# »
t⊥ (b):

difference first, then projection - first subtracting
#»

h from
#»
t , and then projecting the difference

(
#       »

t− h) to His parent of and requiring (
#       »

t− h)⊥ ≈ rj . All (
#       »

t− h)⊥ belong to the red line, which is
unique because it is when #                         »ris parent of is translated to the origin.

2.2 Background: TransH

Given a fact triple (h, rj , t) in a KG (i.e. (Harry, is father of, Tom)), TransH maps each
entity to a vector, and each relation rj to a relation-specific hyperplane Hj and a fixed
vector #»rj on Hj (Figure 2a). For each fact triple (h, rj , t), TransH wants

#  »

h⊥ + #»rj ≈
# »
t⊥ · · · · · (Eq. 1)

where
#  »

h⊥,
# »
t⊥ are projections on

#»

h ,
#»
t onto Hj (Figure 2a).

Revisiting TransH We interpret TransH in a novel perspective. An equivalent way to
put Eq.1 is to change the order of subtraction and projection (Figure 2b):

Projection of (
#       »

t− h) onto Hj ≈ #»rj .

This means that all entity vectors (
#»

h ,
#»
t ) such that their difference

#       »

t− h belongs to the red
line are considered to be tied by relation rj (Figure 2b); Rj ≈ the red line, which is the set
of all vectors whose projection onto Hj is the fixed vector #»rj . Thus, upon a deeper look,
TransH actually embeds a relation set in KG (figure 1b) to a particular set in
Rd. We call such sets relation space for now; in other words, a relation space of some
relation ri is the space where each (h, ri, t)’s

#       »

t− h can exist. We formally visit it later in
Section 3.1. Thus, in TransH,

ri(x, y) ≡ (x, y) ∈ Ri (relation in KG)

∼= #        »
y − x ∈ relation space of ri (relation in Rd)
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Figure 3: Two perspectives of viewing TransINT. (a): TransINT as TransH with additional
constraints - by intersecting H’s and projecting #»r ’s. The dotted orange lines are the projection
constraint. (b): TransINT as mapping of sets (relations in KG’s) into linear subspaces (viewing
TransINT in the relation space (Figure 2b)). The blue line, red line, and the green plane is respectively

is father of, is mother of and is parent of ’s relation space - where
#       »

t− h’s of h, t tied by these relations
can exist. The blue and the red line lie on the green plane - is parent of ’s relation space includes the
other two’s.

2.3 TransINT

We propose TransINT, which, given pre-defined implication rules, guarantees isomorphic
ordering of relations in the embedding space. Like TransH, TransINT embeds a relation rj
to a (subspace, vector) pair (Hj ,

#»rj). However, TransINT modifies the relation embeddings
(Hj ,

#»rj) so that the relation spaces (i.e. red line of Figure 2b) are ordered by implication; we
do so by intersecting the Hj ’s and projecting the #»rj ’s (Figure 3a). We explain with familial
relations as a running example.

Intersecting the Hj’s TransINT assigns distinct hyperplanesHis father of andHis mother of

to is father of and is mother of. However, because is parent of is implied by the aforemen-
tioned relations, we assign

His parent of = His father of ∩His mother of .

TrainsINT’s His parent of is not a hyperplane but a linear subspace of rank 2 (Figure 3a),
unlike in TransH where all Hj ’s are hyperplanes (whose ranks are 1).

Projecting the #»rj’s TransINT constrains the #»rj ’s with projections (Figure 3a’s dotted
orange lines). First, #                       »ris father of and #                         »ris mother of are required to have the same projection
onto His parent of . Second, #                       »ris parent of is that same projection onto His parent of .

We connect the two above constraints to ordering relation spaces. Figure 3b graphically
illustrates that is parent of ’s relation space (green hyperplane) includes those of is father of
(blue line) and is mother of (red line). More generally, TransINT requires that

For distinct relations ri, rj , require the following if and only if ri ⇒ rj :
Intersection Constraint: Hj = Hi ∩Hj .
Projection Constraint: Projection of #»r1 to Hj is #»rj .

where
# »

Hi,
#  »

Hj and #»ri,
#»rj are distinct.

We prove that these two constraints guarantee that an ordering isomorphic to implication

holds in the embedding space: (ri ⇒ rj) iff (ri’s rel. space ⊂ rj ’s rel. space)

or equivalently, (Ri ⊂ Rj) iff (ri’s rel. space ⊂ rj ’s rel. space) .



TransINT

3. TransINT’s Isomorphic Guarantee

In this section, we formally state TransINT’s isomorphic guarantee. We denote all d × d
matrices with capital letters (e.g. A) and vectors with arrows on top (e.g.

#»

b ).

3.1 Projection and Relation Space

In Rd, there is a bijection between each linear subspace Hi and a projection matrix Pi;
∀ #»x ∈ Rd, Pix ∈ Hi [Strang, 2006]. A random point #»a ∈ Rd is projected onto Hi iff multiplied
by Pi; i.e. Pia =

#»

b ∈ Hi. In the rest of the paper, we denote P (or Pi) as the projection
matrix onto a linear subspace H (or Hi). Now, we formally define a general concept that
subsumes relation space (Figure 3b).

Definition∗ (Sol(P,
#»

k )) : Let H be a linear subspace and P its projection matrix. Then,
given

#»

k on H, the set of vectors that become
#»

k when projected on to H, or the solution
space of P #»x =

#»

k , is denoted as Sol(P,
#»

k ).

With this definition, relation space (Figure 3b) is (Sol(Pi,
#»ri)), where Pi is the projection

matrix of Hi (subspace for relation ri); it is the set of points
#       »

t− h such that Pi(
#       »

t− h) = #»ri.

3.2 Isomorphic Guarantees

Main Theorem 1 (Isomorphism): Let {(Hi,
#»ri)}n be the (subspace, vector) embeddings

assigned to relations {Ri}n by the Intersection Constraint and the Projection Constraint ;
Pi the projection matrix of Hi. Then, ({Sol(Pi, #»ri)}n,⊂) is isomorphic to ({Ri}n,⊂).

In actual optimization, TransINT requires something less strict than Pi(
#       »

t− h) = #»ri:

Pi(
#       »

t− h)− #»ri ≈
#»
0 ≡ ||Pi(

#       »

t− h− #»ri)||2 < ε,

for some non-negative and small ε. This bounds
#       »

t− h − #»ri to regions with thickness 2ε,
centered around Sol(Pi,

#»ri) (Figure 4). We prove that isomorphism still holds with this
weaker requirement.

Definition∗ (Solε(P, k)) : Given any P , the solution space of ||P #»x − #»

k ||2 < ε (where ε ≥ 0)
is denoted as Solε(P,

#»

k ).

Main Theorem 2 (Margin-aware Isomorphism): ∀ε ≥ 0, ({Solε(Pi, #»ri)}n,⊂) is isomorphic
to ({Ri}n,⊂).

4. Initialization and Training

The intersection and projection constraints can be imposed with parameter sharing.

4.1 Parameter Sharing Initializaion

From initialization, we bind parameters so that they satisfy the two constraints. For each
entity ej , we assign a d-dimensional vector #»ej . To each Ri, we assign (Hi,

#»ri) (or (Ai,
#»ri))

with parameter sharing. Please see Appendix B on definitions of head/ parent/ child relations.
We first construct the H’s.

Intersection constraint Each subspace H can be uniquely defined by its orthogonal
subspace. We define the orthogonal subspace of the H’s top-down. To every head relation
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Figure 4: Fig. 3(b)’s relation spaces when Pi(
#       »

t− h)− #»ri ≈
#»
0 ≡ ||Pi(

#       »

t− h− #»ri)||2 < ε is required.
(a): Each relation space now becomes regions with thickness ε, centered around figure 3(b)’s relation
space. (b): Relationship of the angle and area of overlap between two relation spaces. With respect
to the green region, the nearly perpendicular cylinder overlaps much less with it than the other
cylinder with much closer angle.

Rh, assign a d-dimensional vector # »ah as an orthogonal subspace for HRh
, making HRh

a
hyperplane. Then, to each Ri that is not a head, additionally assign a new d-dimensional
vector #»ai linearly independent to the bases of all of its parents. Then, Ri’s basis of the
orthogonal subspace for HRi becomes [ # »ah, ...,

#»ap,
#»ai] where # »ah, ...,

#»ap are the vectors assigned
to Ri’s parent relations. Projection matrices can be uniquely constructed given the bases
[ # »ah, ...,

#»ap,
#»ai] [Strang, 2006]. Now, we initialize the #»ri’s.

Projection Constraint To the head relation Rh, pick any random xh ∈ Rd and assign
#»rh = Phx. To each non-head Ri whose parent is Rp, assign #»ri = #»rp + (I − Pp)(Pi)xi for
some random xi. This results in

Pp
#»ri = Pp

#»rp + Pp(I − Pp)(Pi) #»xi = #»rp +
#»
0 = #»rp

for any parent, child pair.

Parameters to be trained Such initialization leaves the following parameters given a
KG with entities ej ’s and relations ri’s: (1) a d-dimensional vector ( # »ah) for the head relation,
(2) a d-dimensional vector ( #»ai) for each non-head relation, (3) a d-dimensional vector #»xi for
each head and non-head relation, (4) a d-dimensional vector #»ej for each entity ej . TransH
and TransINT both assign two d-dimensional vectors for each relation and one d-dimensional
vector for each entity; thus, TransINT has the same number of parameters as TransH.

4.2 Training

We construct negative examples (wrong fact triplets) and train with a margin-based loss,
following the same protocols as in TransE and TransH.

Training Objective We adopt the same loss function as in TransH. For each fact triplet
(h, ri, t), we define the score function

f(h, ri, t) = ||Pi(
#       »

t− h)− #»ri||2
and train a margin-based loss L:

L =
∑

(h,ri,t)∈G

max(0, f(h, ri, t)
2 + γ − f(h′, r′i, t

′)2).
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where G is the set of all triples in the KG and (h′, r′i, t
′) is a negative triple made from

corrupting (h, ri, t). We minimize this objective with stochastic gradient descent.

Automatic Grounding of Positive Triples Without any special treatment, our initial-
ization guarantees that training for a particular (h, ri, t) also automatically executes training
with (h, rp, t) for any ri ⇒ rp, at all times. For example, by traversing (Tom, is father of,
Harry) in the KG, the model automatically also traverses (Tom, is parent of, Harry), (Tom,
is family of, Harry), even if they are missing in the KG. This is because PpPi = Pp with the
given initialization (section 4.1.1) and thus,

f(h, rp, t) = ||Pp(
#       »

t− h)− #»rp||2
2

= ||Pp(Pi((
#       »

t− h)− #»ri))||2
2

≤ ||(Pp + (I − Pp))Pi((
#       »

t− h)− #»ri))||2
2

= ||(Pi((
#       »

t− h)− #»ri))||2
2

= f(h, ri, t)

In other words, training f(h, ri, t) towards less than ε automatically guarantees training
f(h, rp, t) towards less than ε. This eliminates the need to manually create missing triples
that are true by implication rule.

5. Experiments

We evaluate TransINT on two standard benchmark datasets - Freebase 122 [Bordes et al.,
2013] and NELL sport/ location [Wang et al., 2015b] and compare against respectively
KALE [Guo et al., 2016] and SimplE+ [Fatemi et al., 2018], state-of-the-art methods that
integrate rules to KG embeddings, respectively in the trans- and bilinear family. We perform
link prediction and triple classification tasks on Freebase 122, and link prediction only on
NELL sport/ location (because SimplE+ only reported performance on link prediction). All
codes for experiments were implemented in PyTorch [Paszke et al., 2019].1

5.1 Link Prediction on Freebase 122 and NELL Sport/ Location

We compare link prediction results with KALE on Freebase 122 (FB122) and with SimplE+
on NELL Sport/ Location. The task is to predict the gold entity given a fact triple with
missing head or tail - if (h, r, t) is a fact triple in the test set, predict h given (r, t) or
predict t given (h, r). We follow TransE, KALE, and SimplE+’s protocol. For each test
triple (h, r, t), we rank the similarity score f(e, r, t) when h is replaced with e for every
entity e in the KG, and identify the rank of the gold head entity h; we do the same for the
tail entity t. Aggregated over all test triples, we report for FB 122: (i) the mean reciprocal
rank (MRR), (ii) the median of the ranks (MED), and (iii) the proportion of ranks no
larger than n (HITS@N) which are the same metrics reported by KALE. For NELL Sport/
Location, we follow the protocol of SimplE+ and do not report MED. A lower MED, and a
higher MRR and Hits HITS@N are better.

TransH, KALE, and SimplE+ adopt a “filtered” setting that addresses when entities
that are correct, albeit not gold, are ranked before the gold entity. For example, if the gold
entity is (Tom, is parent of, John) and we rank every entity e for being the head of (?,
is parent of, John), it is possible that Sue, John’s mother, gets ranked before Tom. To avoid

1. Repository for all of our code: https://github.com/SoyeonTiffanyMin/TransINT

https://github.com/SoyeonTiffanyMin/TransINT
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Table 1: Results for Link Prediction on FB122. ∗: For KALE, we report the best performance by
any of KALE-PRE, KALE-Joint, KALE-TRIP (3 variants of KALE proposed by Guo et al. [2016]).

Raw Filtered

MRR MED Hits N% MRR MED Hits N%
3 5 10 3 5 10

TransE 0.262 10.0 33.6 42.5 50.0 0.480 2.0 58.9 64.2 70.2
TransH 0.249 12.0 31.9 40.7 48.6 0.460 3.0 53.7 59.1 66.0
TransR 0.261 15.0 28.9 37.4 45.9 0.523 2.0 59.9 65.2 71.8
KALE∗ 0.294 9.0 36.9 44.8 51.9 0.523 2.0 61.7 66.4 72.8
TransINTG 0.339 6.0 40.1 49.1 54.6 0.655 1.0 70.4 75.1 78.7
TransINTNG 0.323 8.0 38.3 46.6 53.8 0.620 1.0 70.1 74.1 78.3

this, the “filtered setting” ignores corrupted triplets that exist in the KG when counting the
rank of the gold entity. (The setting without this is called the “raw setting”).

TransINT’s hyperparameters are: learning rate (η), margin (γ), embedding dimension (d),
and learning rate decay (α), applied every 10 epochs to the learning rate. We find optimal
configurations among the following candidates: η ∈ {0.003, 0.005, 0.01}, γ ∈ {1, 2, 5, 10}, d ∈
{50, 100}, α,∈ {1.0, 0.98, 0.95}; we grid-search over each possible (η, γ, d, α/0. We create 100
mini-batches of the training set (following the protocol of KALE) and train for a maximum
of 1000 epochs with early stopping based on the best median rank. Furthermore, we try
training with and without normalizing each of entity vectors, relation vectors, and relation
subspace bases after every batch of training.

5.1.1 Experiment on Freebase 122

We compare our performance with that of KALE and previous methods (TransE, TransH,
TransR) that were compared against it, using the same dataset (FB122). FB122 is a
subset of FB15K [Bordes et al., 2013] accompanied by 47 implication and transitive rules;
it consists of 122 Freebase relations on “people”, “location”, and “sports” topics. Out
of the 47 rules in FB122, 9 are transitive rules (e.g. person/nationality(x,y) ∧ country/

official language(y,z) ⇒ person/languages(x,z)) to be used for KALE. However, since
TransINT only deals with implication rules, we do not take advantage of them, unlike KALE.

We also put us on some intentional disadvantages against KALE to assess TransINT’s
robustness to absence of negative example grounding. In constructing negative examples
for the margin-based loss L, KALE both uses rules (by grounding) and their own scoring
scheme to avoid false negatives. While grounding with FB122 is not a burdensome task,
it known to be very inefficient and difficult for extremely large datasets [Ding et al., 2018].
Thus, it is a great advantage for a KG model to perform well without grounding of training/
test data. We evaluate TransINT on two settings - with and without rule grounding. We
call them respectively TransINTG (grounding), TransINTNG (no grounding).

We report link prediction results in Table 1; since we use the same train/ test/ validation
sets, we directly copy from Guo et al. [2016] for baselines. While the filtered setting gives
better performance (as expected), the trend is generally similar between raw and filtered.
TransINT outperforms all other models by large margins in all metrics, even without
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Table 2: Results for Link Prediction on NELL sport/ location.

Sport Location
MRR Hits N% MRR Hits N%
Filtered Raw 1 3 10 Filtered Raw 1 3 10

Logical Inference - - 28.8 - - - - 27.0 - -
SimplE 0.230 0.174 18.4 23.4 32.4 0.190 0.189 13.0 21.0 31.5
SimplE+ 0.404 0.337 33.9 44.0 50.8 0.440 0.434 43.0 44.0 45.0
TransINTG 0.450 0.361 37.6 50.2 56.2 0.550 0.535 51.2 56.8 61.1
TransINTNG 0.431 0.362 36.7 48.7 52.1 0.536 0.534 51.1 53.3 59.0

grounding; especially in the filtered setting, the Hits@N gap between TransINTG and
KALE is around 4∼6 times that between KALE and the best Trans Baseline (TransR).

Also, while TransINTG performs higher than TransINTNG in all settings/metrics, the
gap between them is much smaller than the that between TransINTNG and KALE, showing
that TransINT robustly brings state-of-the-art performance even without grounding. The
results suggest two possibilities in a more general sense. First, the emphasis of true positives
could be as important as/ more important than avoiding false negatives. Even without
manual grounding, TransINTNG has automatic grounding of positive training instances
enabled (Section 4.1.1.) due to model properties, and this could be one of its success factors.
Second, hard constraint on parameter structures can bring performance boost uncomparable
to that by regularization or joint learning, which are softer constraints.

5.1.2 Experiment on NELL Sport/ Location

We compare TransINT against SimplE+, a state-of-the-art method that outperforms Com-
plEx [Trouillon et al., 2016] and SimplE [Kazemi and Poole, 2018b], on NELL (Sport/
Location) for link prediction. NELL Sport/ Location is a subset of NELL [Mitchell et al.,
2015] accompanied by implication rules - a complete list of them is available in Appendix
C. Since we use the same train/ test/ validation sets, we directly copy from Fatemi et al.
[2018] for baselines (Logical Inference, SimplE, SimplE+). The results are shown in Table 2.
Again, TransINTG and TransinTNG significantly outperform other methods in all metrics.
The general trends are similar to the results for FB 122; again, the performance gap between
TransINTG and TransINTNG is much smaller than that between TransINTNG and SimplE+.

5.2 Triple Classification on Freebase 122

The task is to classify whether an unobserved instance (h, r, t) is correct or not, where the
test set consists of positive and negative instances. We use the same protocol and test set
provided by KALE; for each test instance, we evaluate its similarity score f(h, r, t) and
classify it as “correct” if f(h, r, t) is below a certain threshold (σ), a hyperparameter to be
additionally tuned for this task. We report on mean average precision (MAP), the mean
of classification precision over all distinct relations (r’s) of the test instances. We use the
same experiment settings/ training details as in Link Prediction other than additionally
finding optimal σ. Triple Classification results are shown in Table 3. Again, TransINTG and
TransINTNG both significantly outperform all other baselines. We also separately analyze
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Table 3: Results for Triple Classification on FB122, in Mean Average Precision (MAP).

TransE TransH TransR KALE∗ TransINTG TransINTNG

0.634 0.641 0.619 0.677 0.781 (0.839/ 0.752) 0.743 (0.709/ 0.761)

Table 4: Examples of relations’ angles and imb with respect to /people/person/place of birth

Relation Anlge imb

Not Disjoint Relatedness /people/person/nationality 22.7 1.18
Implication /people/person/place lived/location∗ 46.7 3.77

Disjoint /people/cause of death/people 76.6 n/a
/sports/sports team/colors 83.5 n/a

MAP for relations that are/ are not affected by the implication rules (those that appear/
do not appear in the rules), shown in parentheses of Table 3 with the order of (influenced
relations/ uninfluenced relations). We can see that both TransINT’s have MAP higher than
the overall MAP of KALE, even when the TransINT’s have the penalty of being evaluated
only on uninfluenced relations; this shows that TransINT generates better embeddings even
for those not affected by rules. Furthermore, we comment on the role of negative example
grounding; we can see that grounding does not help performance on unaffected relations
(i.e. 0.752 vs 0.761), but greatly boosts performance on those affected by rules (0.839 vs
0.709). While TransINT does not necessitate negative example grounding, it does improve
the quality of embeddings for those affected by rules.

6. Semantics Mining with Overlap Between Embedded Regions

Traditional embedding methods that map an object (i.e. words, images) to a singleton vector
learn soft tendencies between embedded vectors with cosine similarity, or angular distance
between two embddings. TransINT extends such a line of thought to semantic relatedness
between groups of objects, with angles between relation spaces. In Fig. 4b, one can observe
that the closer the angle between two embedded regions, the larger the overlap in area. For
entities h and t to be tied by both relations r1, r2,

#       »

t− h has to belong to the intersection of
their relation spaces. Thus, we hypothesize the following over any two relations r1, r2 that
are not explicitly tied by the pre-determined rules:

Let V1 be the set of
#       »

t− h’s in r1’s relation space (denoted as Rel1) and V2 that of r2’s.

(1) Angle between Rel1 and Rel2 represents semantic “disjointness” of r1, r2; the more disjoint
two relations, the closer their angle to 90◦.
When the angle between Rel1 and Rel2 is small,
(2) if majority of V1 belongs to the overlap of V1 and V2 but not vice versa, r1 implies r2.
(3) if majority of V1 and V2 both belong to their overlap, r1 and r2 are semantically related.

(2) and (3) consider the imbalance of membership in overlapped regions. Exact calculation
of this involves specifying an appropriate ε (Fig. 3). As a proxy for deciding whether an
element of V1 (denote v1) belongs in the overlapped region, we can consider the distance
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between v1 and its projection to Rel2; the further away v1 is from the overlap, the larger the
projected distance. Call the mean of such distances from V1 to Rel2 as d12 and the reverse
d21. The imbalance in d12, d21 can be quantified with 1

2(d12d21
+ d21

d12
), which is minimized to 1

when d21 = d12 and increases as d12, d21 are more imbalanced; we call this factor imb.

For hypothesis (1), we verified that the vast majority of relation pairs have angles near
to 90◦, with the mean and median respectively 83.0◦ and 85.4◦; only 1% of all relation pairs
had angles less than 50◦. We observed that relation pairs with angle less than 20◦ were those
that can be inferred by transitively applying the pre-determined implication rules. Relation
pairs with angles within the range of [20◦, 60◦] had strong tendencies of semantic relatedness
or implication; such tendency drastically weakened past 70◦. Table 4 shows the angle and
imb of relations with respect to /people/person/place of birth, whose trend agrees with
our hypotheses. Finally, we note that such an analysis could be possible with TransH as
well, since their method too maps

#       »

t− h’s to lines (Fig. 2b).

In all of link Prediction, triple classification, and semantics mining, TransINT’s theme of
assigning optimal regions to bound entity sets is unified and consistent. Furthermore, the
integration of rules into embedding space geometrically coherent with KG embeddings alone.
These two qualities were missing in existing works such as TransE, KALE, and SimplE+.

7. Related Work

Our work is related to two strands of work. The first strand is Order Embeddings [Vendrov
et al., 2015] and their extensions [Vilnis et al., 2018, Athiwaratkun and Wilson, 2018], which
are significantly limited in that only unary relations and their hierarchies can be modeled.
While Nickel and Kiela [2017] also approximately embed unary partial ordering, their focus
is on achieving reasonably competent result with unsupervised learning of rules in low
dimensions, while ours is achieving state-of-the-art in a supervised setting.

The second strand is those that enforce the satisfaction of common sense logical rules for
binary and n-ary relations in the embedded KG. Wang et al. [2015a] explicitly constraints
the resulting embedding to satisfy logical implications and type constraints via linear
programming, but it only requires to do so during inference, not learning. On the other hand,
Guo et al. [2016], Rocktäschel et al. [2015], Fatemi et al. [2018] induce that embeddings follow
a set of logical rules during learning, but their approaches involve soft induction instead of
hard constraints, resulting in rather insignificant improvements. Our work combines the
advantages of both Wang et al. [2015a] and works that impose rules during learning. Finally,
Demeester et al. [2016] models unary relations only and Minervini et al. [2017] transitivity
only, whose contributions are fundamentally different from us.

8. Conclusion

We presented TransINT, a new KG embedding method such that relation sets are mapped to
continuous sets in Rd, inclusion-ordered isomorphically to implication rules. Our method is
extremely powerful, outperforming existing state-of-the-art methods on benchmark datasets
by significant margins. We further proposed an interpretable criterion for mining semantic
similarity and implication rules among sets of entities with TransINT.
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Appendix A. Proof For TransINT’s Isomorphic Guarantee

Here, we provide the proofs for Main Theorems 1 and 2. We also explain some concepts
necessary in explaining the proofs. We put ∗ next to definitions and theorems we propose/
introduce. Otherwise, we use existing definitions and cite them.

A.1 Linear Subspace and Projection

We explain in detail elements of Rd that were intuitively discussed. In this and later sections,
we mark all lemmas and definitions that we newly introduce with ∗; those not marked with
∗ are accompanied by reference for proof. We denote all d× d matrices with capital letters
(ex) A) and vectors with arrows on top (ex)

#»

b ).

A.1.1 Linear Subspace and Rank

The linear subspace given by A(x − #»

b ) = 0 (A is d × d matrix and b ∈ Rd) is the set of
x ∈ Rd that are solutions to the equation; its rank is the number of constraints A(x− #»

b ) = 0
imposes. For example, in R3, a hyperplane is a set of #»x = [ x1, x2, x3] ∈ R3 such that
ax1 + bx2 + cx3− d = 0 for some scalars a, b, c, d; because vectors are bound by one equation
(or its “A” only really contains one effective equation), a hyperplane’s rank is 1 (equivalently
rank(A) = 1). On the other hand, a line in R3 imposes to 2 constraints, and its rank is 2
(equivalently rank(A) = 2).

Consider two linear subspaces H1, H2, each given by A1(
#»x − #»

b1) = 0, A2(
#»x − #»

b2) = 0.
Then,

(H1 ⊂ H2)⇔ (A1(
#»x − #»

b1) = 0⇒ A2(
#»x − #»

b2) = 0)

by definition. In the rest of the paper, denote Hi as the linear subspace given by some
Ai(

#»x − #»

bi) = 0.

A.1.2 Properties of Projection

Invariance For all #»x on H, projecting #»x onto H is still #»x ; the converse is also true.

Lemma 1 P #»x = #»x ⇔ #»x ∈ H [Strang].

Orthogonality Projection decomposes any vector #»x to two orthogonal components - P #»x
and (I − P ) #»x . Thus, for any projection matrix P , I − P is also a projection matrix that is
orthogonal to P (i.e. P (I − P ) = 0) [Strang].
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Figure 5: Projection matrices of subspaces that include each other.

Lemma 2 Let P be a projection matrix. Then I − P is also a projection matrix such that
P (I − P ) = 0 [Strang].

The following lemma also follows.
Lemma 3 ||P #»x || ≤ ||P #»x + (I − P ) #»x || = || #»x || [Strang].

Projection onto an included space If one subspace H1 includes H2, the order of
projecting a point onto them does not matter. For example, in Figure 3, a random point
#»a in R3 can be first projected onto H1 at

#»

b , and then onto H3 at
#»

d . On the other hand,
it can be first projected onto H3 at

#»

d , and then onto H1 at still
#»

d . Thus, the order of
applying projections onto spaces that includes one another does not matter.

If we generalize, we obtain the following two lemmas (Figure 5):
Lemma 4∗ Every two subspaces H1 ⊂ H2 if and only if P1P2 = P2P1 = P1.
proof) By Lemma 1, if H1 ⊂ H2, then P2

#»x = #»x ∀ #»x ∈ H1. On the other hand, if H1 6⊂ H2,
then there is some #»x ∈ H1,

#»x 6∈ H2 such that P2
#»x 6= #»x . Thus,

H1 ⊂ H2 ⇔ ∀ #»x ∈ H1, P2
#»x = #»x

⇔ ∀ #»y , P2(P1
#»y ) = P1

#»y ⇔ P2P1 = P1.

Because projection matrices are symmetric [Strang],

P2P1 = P1 = P1
T = P1

TP2
T = P1P2.�

Lemma 5∗ For two subspaces H1, H2 and vector
#»

k ∈ H2,

H1 ⊂ H2 ⇔ Sol(P2,
#»

k ) ⊂ Sol(P1, P1
#»

k ).

proof) Sol(P2,
#»

k ) ⊂ Sol(P1, P1
#»

k ) is equivlaent to ∀ #»x ∈ Rd, P2
#»x =

#»

k ⇒ P1
#»x = P1

#»

k .
By Lemma 4, if H1 ⊂ H2 ⇔ P1P2 = P1. Since

#»

k ∈ P2, P2
#»x =

#»

k ⇔ P2(x−
#»

k ) =
#»
0 ⇔

P1(P2
#»x − #»

k ) =
#»
0 ⇔ P1P2

#»x = P1
#»

k ⇔ P1
#»x = P1

#»

k .�

Partial ordering If two subspaces strictly include one another, projection is uniquely
defined from lower rank subspace to higher rank subspace, but not the other way around.
For example, in Figure 3, a point #»a in R3 (rank 0) is always projected onto H1 (rank 1)
at point

#»

b . Similarly, point
#»

b on H1 (rank 1) is always projected onto similarly, onto H3

(order 2) at point d. However, “inverse projection” from H3 to H1 is not defined, because
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not only
#»

b but other points on H1 (such as
#»

b′ ) project to H3 at point
#»

d ; these points
belong to Sol(P3,

#»

d ). In other words, Sol(P1,
#»

b ) ⊂ Sol(P3,
#»

d ). This is the key intuition for
isomorphism , which we prove in the next chapter.

A.2 Proof for Isomorphism

Now, we prove that TransINT’s two constraints (section 2.3) guarantee isomorphic ordering
in the embedding space.

Two posets are isomorphic if their sizes are the same and there exists an order-preseving
mapping between them. Thus, any two posets ({Ai}n,⊂), ({Bi}n,⊂) are isomorphic if
|{Ai}n| = |{Bi}n| and

∀i, j Ai ⊂ Aj ⇔ Bi ⊂ Bj
Main Theorem 1 (Isomorphism): Let {(Hi,

#»ri)}n be the (subspace, vector) embeddings
assigned to relations {Ri}n by the Intersection Constraint and the Projection Constraint ;
Pi the projection matrix of Hi. Then, ({Sol(Pi, #»ri)}n,⊂) is isomorphic to ({Ri}n,⊂).
proof) Since each Sol(Pi,

#»ri) is distinct and each Ri is assigned exactly one Sol(Pi,
#»ri),

|{Sol(Pi, #»ri)}n| = |{Ii}n|. 1
Now, let’s show

∀i, j, Ri ⊂ Rj ⇔ Sol(Pi,
#»ri) ⊂ Sol(Pj , #»rj).

Because the ∀i, j, intersection and projection constraints are true iff Ri ⊂ Rj , enough to
show that the two constraints hold iff Sol(Pi,

#»ri) ⊂ Sol(Pj , #»rj .
First, let’s show Ri ⊂ Ri ⇒ Sol(Pi,

#»ri) ⊂ Sol(Pj , #»rj). From the Intersection Constraint,
Ri ⊂ Ri ⇒ Hj ⊂ Hi. By Lemma 5, Sol(Pi,

#»ri) ⊂ Sol(Pj , Pj
#»ri). From the Projection

Constraint, #»rj = Pj
#»ri. Thus, Sol(Pi,

#»ri) ⊂ Sol(Pj , Pj #»ri) = Sol(Pj ,
#»rj). · · · · ·· 2

Now, let’s show the converse; enough to show that if Sol(Pi,
#»ri) ⊂ Sol(Pj , #»rj), then the

intersection and projection constraints hold true.

Sol(Pi,
#»ri) ⊂ Sol(Pj , #»rj)

⇔ ∀ #»x , Pi
#»x = #»ri ⇒ Pj

#»x = #»rj)

If Pi
#»x = #»ri,

∀ #»x , PjPi
#»x = Pj

#»ri

∀ #»x , Pj
#»x = #»rj

both have to be true. For any #»x ∈ Hi, or equivalently, if #»x = Pi
#»y for some #»y , then the

second equation becomes ∀ #»y , PjPi
#»y = #»rj , which can be only compatible with the first

equation if #»rj = Pj
#»ri, since any vector’s projection onto a subspace is unique. (Projection

Constraint)
Now that we know #»rj = Pj

#»ri, by Lemma 5, Hi ⊂ Hj (intersection constraint).· · · 3
From 1 , 2 , 3 , the two posets are isomorphic.�

In actual implementation and training, TransINT requires something less strict than
Pi(

#       »

t− h) = #»ri:
Pi(

#       »

t− h)− #»ri ≈
#»
0 ≡ ||Pi(

#       »

t− h− #»ri)||2 < ε,
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for some non-negative and small ε. This bounds
#       »

t− h − #»ri to regions with thickness 2ε,
centered around Sol(Pi,

#»ri) (Figure 4). We prove that isomorphism still holds with this
weaker requirement.
Definition∗ (Solε(P, k)) : Given a projection matrix P , we call the solution space of
||P #»x − #»

k ||2 < ε as Solε(P,
#»

k ).
Main Theorem 2 (Margin-aware Isomorphism): For all non-negative scalars ε, ({Solε(Pi, #»ri)}n,⊂
) is isomorphic to ({Ri}n,⊂).
proof) Enough to show that ({Solε(Pi, #»ri)}n,⊂) and ({Sol(Pi, #»ri)}n,⊂) are isomorphic for
all ε.
First, let’s show

Sol(Pi,
#»ri) ⊂ Sol(Pj , #»rj)⇒ Solε(Pi,

#»ri) ⊂ Solε(Pj , #»rj).

By Main Theorem 1 and Lemma 4,

Sol(Pi,
#»ri) ⊂ Sol(Pj , #»rj)⇔ #»rj = Pj

#»ri, Pj = PjPi.

Thus, for all vector
#»

b ,

Pi(x− #»ri) =
#»

b

⇔ PjPi(
#»x − #»ri) = Pj

#»

b

⇔ Pj(
#»x − #»ri) = Pj

#»

b (∵ Lemma 4)

⇔ Pj(
#»x − #»rj) = Pj

#»

b (∵ Pj
#»rj = #»rj = Pj

#»ri)

Thus, if ||Pi( #»x − #»ri)|| < ε, then ||Pj( #»x − #»rj)|| = ||Pj(Pi( #»x − #»ri))|| < ||Pj(Pi( #»x − #»ri)) + (I −
P )(Pi(

#»x − #»ri))|| = ||Pi( #»x − #»ri)|| < ε. · · · 1
Now, let’s show the converse. Assume ||Pi( #»x − #»ri)|| < ε for some i. Then,

||Pj( #»x − #»rj)|| = ||Pj( #»x − #»ri) + Pj(
#»ri − #»rj)||

= ||Pj(Pi( #»x − #»ri) + (I − Pi)( #»x − #»ri)) + Pj(
#»ri − #»rj)||

= ||PjPi( #»x − #»ri) + Pj(I − Pi)( #»x − #»ri) + Pj(
#»ri − #»rj)||

≤ ||PjPi( #»x − #»ri)||+ ||Pj(I − Pi)( #»x − #»ri)||+ ||Pj( #»ri − #»rj)||.

||Pi( #»x − #»ri)|| < ε bounds ||PjPi( #»x − #»ri)|| to at most epsilon. However, because P , (I − P )
are orthogonal(Lemma 3) it tells nothing of ||(I − Pi)( #»x − #»ri)|| < ε, and the second term is
unbounded.(Figure 5) The third term ||Pj( #»ri − #»rj)|| is unbounded as well, since #»rj can be
anything.

Thus, for ||Pi( #»x − #»ri)|| < ε to bound ||Pj( #»x − #»rj)|| at all for all #»x ,

Pj(I − Pi) = 0, Pj(
#»ri − #»rj) = 0

need to hold. By Lemma 4 and 5,

Pj = PjPi ⇔ Hj ⊂ Hi

⇔ Sol(Pi,
#»ri) ⊂ Sol(Pj , Pj #»ri) = Sol(Pj ,

#»rj) · · 2

|{Solε(Pi, #»ri)}n| = |{Sol(Pi, #»ri)}n| holds obviously; each Sol(Pi,
#»ri) has a distinct Solε(Pi,

#»ri)
and each Solε(Pi,

#»ri) also has a distinct “center” (Sol(Pi,
#»ri)) · · 3

From 1 , 2 , 3 , the two sets are isomorphic. �
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Appendix B. Definition of ”Head”, ”Parent”, ”Child” relations (section
4.2)

Definition∗ (Parent/ Child Relations): For two relations r1, r2, if r1 ⇒ r2 and there is no
r3 such that r1 ⇒ r2 ⇒ r2, then r1 is parent of r2; r2 is child of r1. For example, in Figure
1c of the submitted paper, is family of is is parent of ’s parent.
Definition∗ (head): A relation r that has no parent is a head relation.
For example, in Figure 1c of the submitted paper, is extended family of is a head relation
and its max len is 4.

Appendix C. Explanation on NELL Sport/ Location (section 5)

Here are the rules contained in NELL Sport/ Location, copied from [Wang et al., 2015a]
and [Fatemi et al., 2018].

Table 5: Relations and Rules in Sport and Location datasets.

Relations Rules

Sport

AthleteLedSportsTeam (x,AtheleLedSportsTeam, y) → (x,AthleteP laysForTeam, y)
AthletePlaysForTeam (x,AthleteP laysForTeam, y) → (x, PersonBelongsToOrganization, y)
CoachesTeam (x,CoachesTeam, y) → (x, PersonBelongsToOrganization, y)
OrganizationHiredPerson (x,OrganizationHiredPerson, y) → (y, PersonBelongsToOrganization, x)
PersonBelongsToOrganization (x, PersonBelongsToOrganization, y) → (y,OrganizationHiredPerson, x)

Location

CapitalCityOfCountry
CityLocatedInCountry (x,CapitalCityOfCountry, y) → (x,CityLocatedInCountry, y)
CityLocatedInState (x, StateHasCapital, y) → (y, CityLocatedInState, x)
StateHasCapital
StateLocatedInCountry


	Introduction
	TransINT
	Sets as Relations
	Background: TransH
	TransINT

	TransINT's Isomorphic Guarantee
	Projection and Relation Space
	Isomorphic Guarantees


	Initialization and Training
	Parameter Sharing Initializaion
	Training

	Experiments
	Link Prediction on Freebase 122 and NELL Sport/ Location
	Experiment on Freebase 122
	Experiment on NELL Sport/ Location

	Triple Classification on Freebase 122

	Semantics Mining with Overlap Between Embedded Regions
	Related Work
	Conclusion
	Proof For TransINT's Isomorphic Guarantee
	Linear Subspace and Projection
	Linear Subspace and Rank
	Properties of Projection

	Proof for Isomorphism

	Definition of "Head", "Parent", "Child" relations (section 4.2)
	Explanation on NELL Sport/ Location (section 5)


