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Abstract
The hierarchical structure of research organizations plays a pivotal role in science of sci-

ence research as well as in tools that track the research achievements and output. However, this
structure is not consistently documented for all institutions in the world, motivating the need for
automated construction methods. In this paper, we present a new task and model for predicting
sub-institution/super-institution relationships based on their string names. The crux of our model is
that it leverages learned, permutation invariant representations of various token subsets of institution
name strings. Our model outperforms or matches non-set-based models and baselines. We also
create a dataset for training and evaluating models for this task based on the publicly available
relationships in the Global Research Identifier Database.

1. Introduction

Academic, government and various industrial organizations are often hierarchically structured [Fan
et al., 2012]. For example, the Canadian Institute for Theoretical Astrophysics is a sub-institution
of University of Toronto and Harvard University is the super-institution of both Harvard Medical
School and Harvard Divinity School.

Science of science research focuses on interactions among various scientific agents (researchers,
academic institutions, etc.) with the goal of developing tools and policies for accelerating science
[Fortunato et al., 2018]. Institution hierarchies are used in the analysis of the funding of institutions
and, when accompanied with temporal information, organizational hierarchies can also provide
insights into the evolution / growth of institutions as well as fine-grained information about the
mobility of researchers, capturing department and career focus changes [Azoulay et al., 2011,
Stephan, 2012]. Thus, correctly modeling organizational hierarchies is critical for tool development
in science of science and other institutional research.

The Global Research Identifier Database (GRID) is a resource meant to support such efforts.
GRID is carefully curated and contains detailed information about research institutions, includ-
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ing their sub-institution/super-institution relationships. While the database is large and growing
(containing almost 100k institutions at the time of writing), there are institutions and relationships
that are missing. For example, Montreal Institute for Learning Algorithms is not present in GRID,
and the public hospital, John Hunter Children’s Hospital, in New South Wales is not connected to
the Government of New South Wales nor Australia’s Government / healthcare system. Similarly,
fine grained information, such as particular research laboratories or smaller departments within
universities’ colleges, are often absent.

Relation extraction methods are typically used to create knowledge-bases (KBs) containing facts
such as which institutions are parents/children of one another. OpenIE [Etzioni et al., 2011, Fader
et al., 2011, inter-alia] and Universal Schema [Riedel et al., 2013, Verga et al., 2016, Das et al.,
2017, inter-alia], are able to extract complex relationship between entities from text. These methods
are either based on link-prediction techniques or use rich contextual information to make accurate
predictions. Unfortunately, such context is often unavailable. For example, funding agencies listed in
research papers, assignees mentioned in patents, and author/inventor affiliations included in articles
and BibTeX entries regularly appear as strings with little to no context relevant to making predictions
about organization hierarchies. Access to a KB of institutions names and other features may be
available, but these KBs often miss hierarchical relationships between those institutions.

In this paper, we explore methods for predicting hierarchical relationships between institu-
tions based solely on the spelling of the institution names and knowledge-base features. While
some sub-institution/super-institution relationships can be predicted using simple token overlap
between institution strings (e.g., Harvard Medical School sub-institution-of Harvard Uni-
versity), others require methods which can perform richer semantic understanding beyond simple
token matching (e.g., Centre d’Investigation Clinique Pierre Drouin,Vandœuvre-lès-Nancy, France
sub-institution-of Centre Hospitalier Universitaire de Nancy,Nancy, France). Predicting
sub-institution/super-institution relationships without additional context is important when trying to
complete KBs such as GRID without intensive data gathering for contextual evidence.

We present a model that predicts sub-institution-of relationships using institution names,
locations, and types. Inspired by the intuition that set-intersections and set-differences among the
tokens of two institution names provide significant signal as to their relationship, our model learns
to combine permutation invariant representations of token subets derived from institution names.
Operating over embedded representations improves generalizability in comparison to techniques that
operate on discrete tokens.

In this work, we make the following 3 contributions: (1) we present a new set-based model that
outperforms non-set-based models on sub-institution/super-institution relationship prediction, (2) we
examine the difficulty of the task and show when set-based models work well, and (3) we create and
release a new dataset derived from GRID to support sub-/super-institution relationship prediction.

2. Background

2.1 Dataset & Preprocessing

The Global Research Identifier Database (GRID), contains information about 91,640 institutions
from 217 countries1. The institutions include universities, government agencies, companies, health

1. We use the 2018-11-14 Release.



PREDICTING INSTITUTION HIERARCHIES WITH SET-BASED MODELS

Figure 1: GRID Institution Hierarchy. A connected component in the GRID institution graph.
Tokens highlighted in blue are members of the intersection of the sub-institution and super-institution
strings. Tokens highlighted in red are not a members of this intersection, however they are semanti-
cally conveyed in both the the sub-institution and super-institution strings.

care organizations and other places of research. GRID stores the name, location, and type (university,
hospital, government agency, etc), as well as the parent of each institution. The database includes
11,393 instances of the sub-institution relationship.

Our goal is to develop models that predict the hierarchical structure of institutions. We use
GRID to derive a new dataset that contains pairs of institutions that participate in the sub-institution
relationship (i.e., positive examples) and pairs of institutions that do not (i.e., negative examples).
Constructing our dataset begins by building a graph where each node represents a GRID institution,
and each edge represents a parent-child relationship among an institution pair. We partition the
child-parent edges into a train/dev/test split by randomly assigning each connected component of
institutions and all of its edges to either the train, development or test set (using a 0.6/0.2/0.2

split). We construct negative examples in three ways: (1) non-sub-institutions in the same connected
component, (2) non-sub-institutions in the same city in a different connected component, and
(3) randomly sampled pairs. Figure 1 visualizes a connected component from GRID. Due to its
overwhelming size (2981 sub-institutions) with respect to other institutions in GRID, we exclude the
connected component representing the United States Government from the dataset.

2.2 Institution Hierarchy Prediction

Let A and B be two institutions in GRID. Then, A sub-institution-of B, if A is a de-
scendant of B according to GRID. In institution hierarchy prediction, we are given two GRID
institutions, A and B, which includes their names, locations, and types, and asked to predict if the A
sub-institution-of B.

3. Set-based Models for Predicting Institution Hierarchies

In this section, we present a model for predicting whether one institution is a sub-institution of
another. Our model makes use of Set Transformers [Lee et al., 2019] to model the token overlap
between the institution names.
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Figure 2: Set-based predictor. Given two institution names represented as sets of tokens, the
predictor embeds the sets, their intersection, and set difference. It uses these embeddings to compute
a score representing the likelihood that the first institution is a sub-institution of the second.

3.1 Sets of Institution Tokens

When predicting whether one institution is a sub-institution of another, the collection of tokens
that appear in both institution names constitutes a strong signal. For example, consider the pair of
institutions University of Pennsylvania and The Wharton School of the University of Pennsylvania.
In this case, one institution name is a substring of the other, suggesting that in such cases the
substring-institution name is a super-institution of the other.

However, this heuristic is far too strict. For example, consider the institution pair The Ohio State
University sub-institution-of University System of Ohio, where the substring relationship
does not hold. In this example, we notice that the two strings share the tokens {Ohio, University},
though the tokens appear in different orders in the strings. This suggests treating institution names as
unordered sets of tokens rather than ordered strings. Additionally, the most salient tokens appear
in both institution names and less relevant tokens do not. This suggests that it is more likely for
some tokens to appear in both names if two institutions participate in the sub-institution-of
relationship than others.

We present a model inspired by these insights, which is designed to predict whether one institution
is a sub-institution of another. The model takes an ordered pair of institution names as input, (s1, s2),
and outputs a score: h(s1, s2), with larger scores corresponding to greater model confidence in
s1 sub-institution-of s2. We use ts be the tokens of a string s. The model is a function
of four sets, each of which can be built from the two institution names: (1) the first institution
represented as a set of tokens (ts1), (2) the second institution represented as a set of tokens (ts2), (3)
the intersection between the first and second institution (ts1 ∩ ts2), and (4) the set difference between
the second institution and the first, (s2 \ s1).

Let f : 2V → Rd be a function that returns the embedded representation of a token set, where V
is the vocabulary defined by our model. Define the model, h, evaluated on two string, s1 and s2, as
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follows:

h(s1, s2) = 〈f(ts2), f(ts2 ∩ ts1)〉 − 〈f(ts1), f(ts2 ∩ ts1)〉 − 〈f(ts2), f(ts2 \ ts1〉) (1)

where 〈·, ·〉 is the inner product of the two vectors.
The first term in Equation 1 computes the dot product between s2, the candidate super-institution,

and the intersection of the two institutions strings. As previously discussed, if all tokens of s2 appear
in ts1 ∩ ts2, then it is likely that s1 sub-institution-of s2. The second term encodes a dual
effect: if the embedded representation of s2, i.e., f(t2) is similar to the embedding of the intersection
of the tokens of s1 and s2, i.e., f(ts1 ∩ ts2), then s2 is likely a super-institution of s1 (captured in
the subtraction of the second term from the first). Together, the first two terms encode the intuition
that children institutions tend to exhibit a higher degree of specificity than their parents. Finally,
the third term in the model compares the tokens in s2 (including tokens in the intersection) to the
tokens which are unique to s2. If there is large overlap between these sets, it indicates that s2 is
significantly different from s1, i.e., s1 is unlikely to be a sub-institution of s2. The third term in
Equation 1 compares the tokens in s2 (and potentially in the intersection) to the tokens which are
unique to s2. A large overlap between these sets indicates that s2 is sufficiently different from s1, i.e.,
s1 is unlikely to be a sub-institution of s2. Figure 2 visualizes our model. Any set encoder function
may be used for f . Our choice of this function is discussed further in Section 3.2.

3.1.1 TRAINING OBJECTIVE

We train our model to optimize a ranking objective. Given a triple of institutions (D,Apos,Aneg) such
that D sub-institution-of Apos is True and D sub-institution-of Aneg is False, we
use the Bayesian Personalized Ranking objective as our loss function σ(h(D,Apos)− h(D,Aneg))

[Rendle et al., 2009].

3.2 Set Encoders

Our model relies on the function, f , to provide a meaningful representations of sets of institution
name tokens. While many permutation invariant, set-based models haven been proposed in recent
work, [Ravanbakhsh et al., 2016, Zaheer et al., 2017, Ilse et al., 2018, Hartford et al., 2018, Lee et al.,
2019, Mena et al., 2018, Cotter et al., 2019, Bloem-Reddy and Teh, 2019], in this paper, we use a
Set Transformer [Lee et al., 2019], which represents the state-of-the-art permutation invariant model
based on transformers [Vaswani et al., 2017]. Given a set of tokens, the Set Transformer encodes the
tokens without position embeddings. We take the set representation to be the average of the final
representation after the last layer in the transformer for each token in the set. The size of the sets used
are relatively small, and so we do not use the inducing point-based Set Transformers and instead use
all pairwise self-attention [Lee et al., 2019].

3.3 Institution Features

In addition to the name, GRID contains the city, state, country, and type (i.e., Education, Government,
Nonprofit) for each institution. To train our model, we apply h (Eq. 1) to each feature and get a score
for each feature. Then, the final score is learned weighted sum of the scores for each feature. Note
that each feature has its own parameters. Institution name and city have a token vocabulary while the
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Model Ablation MAP Acc. at 1 Acc. at 10 Acc. at 50 Acc. at 100

TokSim Orig 0.060 0.037 0.161 0.332 0.384
O-LSTM Orig 0.166± 0.04 0.105± 0.05 0.331± 0.04 0.598± 0.07 0.728± 0.08

Unig 0.170± 0.02 0.116± 0.03 0.329± 0.05 0.624± 0.07 0.745± 0.07

O-Trans Orig 0.128± 0.05 0.086± 0.04 0.118± 0.08 0.484± 0.05 0.604± 0.06

Unig 0.103± 0.02 0.050± 0.02 0.225± 0.04 0.535± 0.08 0.643± 0.08

S-AvgEmb Orig 0.182± 0.03 0.133± 0.06 0.327± 0.03 0.610± 0.02 0.701± 0.02

LC 0.177± 0.02 0.11± 0.02 0.308± 0.03 0.598± 0.03 0.684± 0.04

MLP 0.146± 0.02 0.077± 0.02 0.280± 0.04 0.605± 0.01 0.708± 0.02

Unig 0.090± 0.01 0.022± 0.01 0.193± 0.21 0.559± 0.03 0.684± 0.02

S-Trans (Ours) Orig 0.262± 0.07 0.248± 0.11 0.407± 0.07 0.630± 0.09 0.714± 0.10

LC 0.128± 0.06 0.057± 0.04 0.281± 0.23 0.573± 0.10 0.696± 0.07

LCI 0.303± 0.03 0.318± 0.07 0.421± 0.05 0.665± 0.05 0.771± 0.03

MLP 0.170± 0.05 0.128± 0.09 0.321± 0.05 0.549± 0.09 0.655± 0.09

Unig 0.135± 0.01 0.061± 0.01 0.254± 0.02 0.601± 0.06 0.732± 0.05

Table 1: Score using Institution and Location (city, state, country) and Type features

state, country and type have a character vocabulary (for the sake of generalization to unseen location
strings).

3.4 Learning Model Coefficients

Note that the model h (Eq. 1) can be rewritten as

h(s1, s2) = 〈f(ts2), f(ts2 ∩ ts1)〉 − 〈f(ts1), f(ts2 ∩ ts1)〉 − 〈f(ts2), f(ts2 \ ts1〉)
=

〈[
1 −1 −1

]
,
[
〈f(ts2), f(ts2 ∩ ts1)〉 〈f(ts1), f(ts2 ∩ ts1)〉 〈f(ts2), f(ts2 \ ts1〉

]〉
.

To determine how important the specific combination of terms for our model h is, we replace the
vector

[
1 −1 −1

]
with a learnable weight vector, a learnable weight vector initialized randomly,

and a learnable weight vector initialized with our proposed model (which we call the default
initialization). This only represents a linear combination of the values[

〈f(ts2), f(ts2 ∩ ts1)〉 〈f(ts1), f(ts2 ∩ ts1)〉 〈f(ts2), f(ts2 \ ts1〉
]
.

4. Experiments

We evaluate the ability of our model to predict sub-institution relationships between institutions
in a retrieval-based task on our GRID dataset. Given the name of an institution (query), we rank
the candidate super-institution name. We evaluate model performance in terms of mean average
precision (MAP) and accuracy at K (Acc.) 2 for K = 1, 5, 50, and 100 . The descendant institutions
are randomly assigned to be queries in a train/dev/test split. We compare the following models:

• SetTransformer (S-Trans) - The proposed approach of this paper, our set-based model with
a set transformer [Lee et al., 2019] for the function f .

2. We use the following measurement: number of sub-institutions in top K / min(K, number of sub-institutions)
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Model Ablation MAP Acc. at 1 Acc. at 10 Acc. at 50 Acc. at 100

TokSim Orig 0.070 0.058 0.0192 0.389 0.481
O-LSTM Orig 0.099± 0.03 0.044± 0.02 0.212± 0.07 0.506± 0.08 0.636± 0.07

Unig 0.155± 0.02 0.103± 0.03 0.292± 0.02 0.546± 0.04 0.659± 0.04

O-Trans Orig 0.079± 0.01 0.035± 0.01 0.174± 0.01 .382± 0.03 0.506± 0.03

Unig 0.071± 0.01 0.034± 0.01 0.155± 0.03 0.353± 0.03 0.446± 0.08

S-AvgEmb Orig 0.082± 0.01 0.042± 0.01 0.153± 0.02 0.378± 0.02 0.511± 0.03

LC 0.097± 0.01 0.055± 0.01 0.167± 0.02 0.404± .04 0.528± 0.03

MLP 0.081± 0.01 0.043± 0.01 0.147± 0.02 0.377± 0.03 0.512± 0.05

Unig 0.045± 0.01 0.013± 0.00 0.019± 0.01 0.259± 0.05 0.381± 0.07

S-Trans(Ours) Orig 0.192± 0.05 0.126± 0.07 0.382± 0.04 0.657± 0.04 0.750± 0.03

LC 0.175± 0.05 0.132± 0.08 0.312± 0.05 0.546± 0.04 0.658± 0.05

LCI 0.184± 0.09 0.132± 0.12 0.336± 0.12 0.626± 0.09 .734± 0.07

MLP 0.129± 0.02 0.070± 0.01 0.249± 0.05 0.486± 0.16 0.591± 0.17

Unig 0.119± 0.03 0.069± 0.01 0.208± 0.05 0.506± 0.07 0.649± 0.07

Table 2: Score using Institution and Location (city, state, country) features Only

Model Ablation MAP Acc. at 1 Acc. at 10 Acc. at 50 Acc. at 100

TokSim Orig 0.062 0.149 0.218 0.325 0.401
O-LSTM Orig 0.087± 0.02 0.040± 0.02 0.198± 0.07 0.488± 0.07 0.601± 0.08

O-Trans Orig 0.067± 0.02 0.036± 0.01 0.144± 0.06 0.355± 0.08 0.471± 0.08

S-AvgEmb Orig 0.032± 0.00 0.011± 0.00 0.056± 0.01 0.235± 0.02 0.397± 0.02

LC 0.035± 0.00 0.015± 0.00 0.061± 0.01 0.225± 0.02 0.406± 0.02

MLP 0.034± 0.00 0.013± 0.00 0.013± 0.00 0.258± 0.01 0.410± 0.02

S-Trans (Ours) Orig 0.135± 0.02 0.077± 0.01 0.237± 0.06 0.478± 0.07 0.646± .07

LC 0.123± 0.03 0.071± 0.02 0.227± 0.05 0.379± 0.05 0.503± 0.07

LCI 0.115± 0.02 0.064± 0.02 0.214± 0.04 0.443± 0.16 0.587± 0.04

MLP 0.156± 0.01 0.099± 0.02 0.276± 0.02 0.427± 0.02 0.520± 0.04

Table 3: Score using Institution Features Only

• SetAverageEmbedding (S-AvgEmb) - Our set-based model with a simple average of embed-
dings for the function f .
• OrderedLSTM (O-LSTM) - An order-based model that encodes each string using an LSTM

and represents that string as the last LSTM hidden state. We use a dot product to score two
encoded strings.
• OrderedTransformer (O-Trans) - An order-based model that represents each string as the

average of the tokens encoded by a transformer. We use a dot product to score two encoded
strings.
• TokenSimilarity (TokSim) - Rank candidate pairs by |tpar∩tch|

|tpar|

We also experiment with several methods of combining the three terms of our set-based scoring
function (Equation 1):

• Original (Orig) - the scoring function h described above.

• Linear Combination (LC) - a learned linear combination of the values.
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Model MAP Acc. at 1 Acc. at 10 Acc. at 50 Acc. at 100

TokSim 0.096± 0.05 0.074± 0.04 0.243± 0.10 0.389± 0.05 0.451± 0.14

O-LSTM 0.296± 0.08 0.234± 0.12 0.504± 0.06 0.775± 0.04 0.858± 0.03

O-Trans 0.200± 0.04 0.105± 0.03 0.416± 0.05 0.734± 0.03 0.826± 0.02

S-AvgEmb 0.198± 0.06 0.153± 0.10 0.339± 0.05 0.655± 0.02 0.748± 0.02

S-Trans 0.293± 0.01 0.277± 0.06 0.453± 0.03 0.686± 0.07 0.762± 0.10

Table 4: Cross Validation Scores

% of Candidate Tokens in Query Tokens

M
AP

0.00

0.25

0.50

0.75

1.00

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

TokSim O-LSTM S-Trans

Figure 3: Performance by Token Overlap of Query-Candidate Institution Strings

• Linear Combination Initialized (LCI), a learned linear combination of the values initialized
as the scoring function h.

• Multilayer Perceptron (MLP) - a one layer multi-layer perceptron.

We also experiment with using a token vocabulary (Unig) for every feature (including the state,
country, and type), rather than just the institution name and city as in our model.

For each model, we report the mean performance metric and its standard deviation across 5
different random seeds. We bold the model with the highest mean score, and any model whose mean
is within 1 standard deviation. Table 1 shows the result for this experiment. We also compare the
models when given access to subsets of the additional GRID features (i.e., location, type). Table 2
contains the results when given access to institution name and location. Table 3 contains the results
when given access to institution name only.

We provide the code and data to reproduce our experimental results3. Models are implemented
in PyTorch. The models are trained using Adam [Kingma and Lei Ba, 2015]. We perform hyperpa-
rameter tuning (embedding dimension, feed-forward layer dimension, number of heads, number of
layers) on a development set 4 and report performance on the test set for the model which performed
highest in terms of MAP on the development set.

3. https://github.com/iesl/institution_hierarchies
4. Hyperparameter search and configurations released in the code

https://github.com/iesl/institution_hierarchies
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Descendant Entity Prediction by our model Prediction by OrderedLSTM

Northampton General Hospital, Northampton General Hospital Northamptonshire Healthcare NHS
Northampton, NHS Trust, Northampton, Foundation Trust, Kettering,

England,United Kingdom United Kingdom United Kingdom
NIHR Leeds Musculoskeletal Leeds Teaching Hospitals National Institute for Health Research

Biomedical Research Unit, Leeds, NHS Trust, Leeds, Leeds,
United Kingdom United Kingdom United Kingdom

Table 5: Comparison between our model and OrderedLSTM. This table presents examples for
which our model makes a correct prediction and OrderedLSTM makes an incorrect prediction. We
observe that our model correctly utilizes location information.

Descendant Entity Prediction by our model Prediction by TokenSim

The National Institute for National Academy of Sciences Ukrainian Institute of Public
Strategic Studies, of Ukraine,Kiev, Health Policy

Kiev,Ukraine Ukraine ,Kiev,Ukraine
NIHR Oxford Musculoskeletal Oxford University Hospitals NHS Trust, Medical Diagnostics

Biomedical Research Unit, Oxford, (United Kingdom),Yarnton,
Oxford„United Kingdom Oxford United Kingdom United Kingdom

Table 6: Comparison between our model and TokenSim. Our model makes a correct predictions
in these examples and TokenSim makes incorrect predictions. We observe that our model seems to
identify salient tokens to correctly make these predictions.

For MAP and Acc. at K for all k, we notice that our model (or a variant of it) has the highest mean
across the different features used except for Acc. at 50 when using the institution name and location
only. When using all the features, the S-Trans which learns a linear combination of the values 〈f(ts2),
(ts2 ∩ ts1)〉, 〈f(ts1), f(ts2 ∩ ts1)〉, 〈f(ts2), f(ts2 \ ts1〉 with the the weights initialized to its default
initialization is the top performing. Note that the S-Trans which uses the default initialization (our
proposed model) outperforms the S-Trans which just learns a linear combination of the values. We
hypothesize that randomly initializing the weights causes the model to get stuck in a bad local optima,
while initializing the weights to its default initialization helps it find a better local optima. Lastly, we
observe that in general using all the features (the institution name, location, and type) increases the
performance of all the models.

To further evaluate our model, we perform 5-fold cross validation rather than using the proposed
split (Table 4). Though the average MAP for O-LSTM is slightly higher than the average MAP for
S-Trans, the standard deviation is 8 times as high. We note that S-Trans performs best in terms of
Acc.@1.

4.1 Analysis

Performance By Token Overlap We hypothesize that predicting sub-institution-of be-
tween institution strings that share a large number of tokens is easier than when fewer tokens are
shared between the strings. To analyze this hypothesis, we partition the test examples into buckets by
percent token overlap between the query and the true positive (i.e., the first bucket contains pairs
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Descendant Entity Ancestor Entity

London Chest Hospital,London„United Kingdom Barts Health NHS Trust,London,United Kingdom
Pharmacy and Poisons Board Ministry of Health

BASF (Canada),Mississauga,Ontario,Canada BASF (Germany),Ludwigshafen am Rhein,Germany
BASF (China),Shanghai„China BASF (Germany),Ludwigshafen am Rhein,Germany

Table 7: Challenging Examples. These examples highlight the difficulty of predicting sub-
institutions. There are examples with very little textual overlap and examples with drastically
different geographic locations.

Descendant Entity Ancestor Entity SetTransformer Rank

Belmont Hospital, Belmont, New South Wales Department of Health,
7

New South Wales, Australia North Sydney, New South Wales, Australia
John Hunter Children’s Hospital, Government of New South Wales,

2
Newcastle, New South Wales, Australia Sydney, New South Wales, Australia

Table 8: Discovering Missing Edges in GRID. These are examples of pairs of institutions do appear
exhibiting sub-institution-of which are not in GRID (i.e., false negatives).

with 0-5% overlap, the second 5%-15% overlap, etc.). Figure 3 contains the result. We observe
that MAP scores for all models increase with token overlap. We observe that S-Trans has a larger
margin of improvement over O-LSTM and TokSim when the amount of token overlap is smaller. We
hypothesize that the set-difference-base term in S-Trans objective are useful in determining which
non-overlapping tokens are meaningful when making sub-institution-of predictions.

Examples We provide qualitative examples of sub-institution-of predictions by our pro-
posed model as well as by other baseline methods. These examples are given in Tables 5 and 6. In
Table 5, we compare the predictions of S-Trans and of O-LSTM for two queries. In prediction of the
super-institution of Northampton General Hospital we observe that O-LSTM selects a healthcare
service at the lexically similar Northamptonshire. We hypothesisize that S-Trans is less likely to
make such a mistake because it would consider Northamptonshire in the group of non-overlapping
tokens in the two strings and could penalize not matching such a specific word. Table 6 provides a
similar comparison between S-Trans and TokSim’s predictions.

Table 7 show examples that underscore the difficulty of institution hierarchy prediction. These
examples are cases for which external data or contextual features are required to determine the correct
relationships. For example, without knowledge that BASF is headquartered in Germany, it is difficult
to predict that BASF(Canada), Mississauga, Ontario, Canada is sub-institution of BASF(Germany),
Ludwigshafen am Rhein, Germany. Newswire, web data, or affiliation strings of authors could
contain the required evidence.

Missing Sub-Institutions in GRID To determine the usefulness of our model and understand
the quality of our labeled data, we look for false negatives, i.e, pairs of institutions that exhibit
the sub-institution-of relationship, but are not labeled as such in GRID. We consider 50
institutions and consider the model’s highest ranked predictions for these super-institutions. Among
these, we found two examples of false negatives that are shown in Table 8.
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5. Related Work

The proposed task in this paper sits at the intersection of learned string similarity methods, relation
prediction and extraction, and more generally set-based neural network models.

A fundamental component of the proposed approach is to use a parameterized method for
comparing the spelling of two institution names. Parametric string similarity methods have a
long history. Classic methods (Levenshtein, Longest Common Subsequence, Needleman-Wunsch
[Needleman and Wunsch, 1970], and Smith-Waterman [Smith and Waterman, 1981]) measure
similarity via insert, edit, and delete operations used to transform one string into another. Other work
uses generative models [Dreyer et al., 2008, Andrews et al., 2012, 2014, Faruqui et al., 2016, Rastogi
et al., 2016] or conditional random fields [McCallum et al., 2005] to model the string mutation
sequences in an effort to learn a parameterized method for similarity within a domain. Recently, Gan
et al. [2017] proposed a neural network model based on CNNs applied to character n-grams to model
string similarity.

Relation extraction systems such as OpenIE, Universal Schema and others [Angeli et al., 2015,
Verga et al., 2016, Das et al., 2017] are often interested in predicting relationships such as subsidiary
or other similar relationships to that of this paper. However, these systems use natural language
context such as sentences or paragraphs to make predictions rather than the strings themselves.

Set-based embedding models has also been well studied [Ravanbakhsh et al., 2016, Zaheer et al.,
2017, Ilse et al., 2018, Hartford et al., 2018, Lee et al., 2019, Mena et al., 2018, Cotter et al., 2019,
Bloem-Reddy and Teh, 2019]. Much of this work focuses on learning representations for sets that
are order invariant. Our proposed approach models tokens in the intersection / set difference of the
institution names, making set-based models a natural choice as our encoder’s architecture.

6. Conclusion

In this paper, we consider the task of predicting institution hierarchies using a model-based on set
transformers using institution names and other metadata. We hope that our work, which includes a
dataset built from GRID, spurs interest in this challenging and important problem and that future
work explores both richer spelling-based, context-free models as well as models that make use
of natural language text and other contextual resources. In addition, rather than constructing set
intersections by finding overlapping tokens, we will consider model-based methods for constructing
set intersections (i.e., functions of geometric representations, such as Box Embeddings [Vilnis et al.,
2018] or Order Embeddings [Vendrov et al., 2015]).
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