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Abstract

Commonsense knowledge (CSK) can support AI applications, such as image description
or chatbots. Prior works on acquiring CSK, such as ConceptNet, compiled statements
about concepts and their properties, but most works did not distinguish typical versus
possible properties. Instead, the extraction confidence scores were used as a proxy for
this kind of refinement. This paper introduces a multi-faceted model of CSK statements
and methods for joint reasoning over sets of inter-related statements. Our model captures
four refined facets for statements: plausibility, typicality, remarkability and salience, with
scoring and ranking along each dimension. For example, hyenas drinking water is typical
but not salient, whereas hyenas eating carcasses is salient. For reasoning and ranking, we
develop an ILP-based method with soft constraints, to couple the inference over concepts
that are related in a taxonomic hierarchy. Our evaluation shows that we can consolidate
existing large CSK collections into much cleaner and more expressive knowledge.

1. Introduction

Motivation and problem. Commonsense knowledge (CSK) is a potentially important
asset towards building versatile AI applications, such as visual understanding for describing
images (e.g., (Agrawal et al., 2017; Karpathy and Fei-Fei, 2017; Shuster et al., 2019)) or
conversational agents like chatbots (e.g., (Young et al., 2018; Rajani et al., 2019; Yang
et al., 2019)). In delineation from encyclopedic knowledge on entities like Trump, Sydney,
or FC Liverpool, CSK refers to properties, traits and relations of everyday concepts, such
as elephants, coffee mugs or school buses. For example, when seeing scenes of an elephant
juggling a few coffee mugs with its trunk, or with school kids pushing an elephant into a
bus, an AI agent with CSK should realize the absurdity of these scenes and should generate
adequate captions for image description or utterances in a conversation.

Encyclopedic knowledge bases (KBs) received much attention, with projects such as DB-
pedia, Wikidata, Yago or NELL and large knowledge graphs at Amazon, Baidu, Google, Mi-
crosoft etc. supporting entity-centric search and other services. In contrast, approaches to
acquire CSK have been few and limited. Projects like ConceptNet (Speer and Havasi, 2012),
WebChild (Tandon et al., 2014), TupleKB (Mishra et al., 2017) and Quasimodo (Romero
et al., 2019) have compiled millions of concept:property or subject-predicate-object (SPO)
statements, but still suffer from sparsity or noise. ConceptNet has only a single non-
taxonomic/non-lexical statement about hyenas, namely, hyenas: laugh a lot 1, and WebChild

1. http://conceptnet.io/c/en/hyena

http://conceptnet.io/c/en/hyena
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lists overly general and contradictory properties such as small, large, demonic and fair for
hyenas2.

Another limitation of existing CSK collections is that they rank statements solely by
confidence scores. There is no information about which properties are typical, which ones
are possible but rare, and which ones are salient from a human perspective. For example,
the statement that hyenas drink milk (as all mammals when they are cubs) is valid, but it
is not typical. Hyenas eating meat is typical, but it is not salient in the sense that humans
would spontaneously name this as a key trait of hyenas. In contrast, hyenas eating carcasses
is remarkable as it sets hyenas apart from other African predators (like lions or leopards),
and many humans would list this as a salient property. Prior works on building Web-scale
CSK collections largely missed out on this more refined perspective (see Section 2 for more
discussion).

Approach and contribution. We present Dice (Diverse Commonsense Knowledge), a
reasoning-based method for advancing CSK collections to a more expressive stage of multi-
faceted knowledge. Dice is based on two novel ideas:

• We introduce four facets of concept properties: (i) Plausibility indicates whether a state-
ment makes sense at all (like the established but overloaded notion of confidence scores).
(ii) Typicality indicates whether a property holds for most instances of a concept (e.g.,
not only for cubs). (iii) Remarkability expresses that a property distinguishes the con-
cept from closely related concepts (like siblings in a taxonomy). (iv) salience reflects
that a property is characteristic for the concept, in the sense that most humans would
list it as a key trait of the concept.

• We identify inter-related concepts by their neighborhoods in a concept hierarchy or via
embeddings, and devise a set of weighted soft constraints that allows us to jointly reason
over the four dimensions for sets of candidate statements. We cast this approach into
an integer linear program (ILP), and harness the theory of reduced cost (Bertsimas and
Tsitsiklis, 1997) for LP relaxations to compute rankings for each of the facets.

As an example, consider the concepts lions, leopards, cheetahs and hyenas. The first three
are coupled by being taxonomic siblings under their hypernym big cats, and the last one is
highly related by word-level embeddings (as all live in the African savannah). Our constraint
system includes logical clauses such as

Plausible(s1, p) ∧ Related(s1, s2) ∧ ¬Plausible(s2, p) ∧ . . . ⇒ Remarkable(s1, p)

where . . . refers to enumerating all siblings of s1, or highly related concepts. The constraint
itself is weighted by the degree of relatedness; so it is a soft constraint that does allow excep-
tions. This way we can infer that remarkable (and also salient) statements include lions: live
in prides, leopards: climb trees, cheetahs: run fast and hyenas: eat carcasses. Experiments
with inputs from ConceptNet, TupleKB and Quasimodo show that Dice achieves high pre-
cision and good coverage for its multi-faceted output. The resulting datasets contain 1.6
million statements for 74K concepts, available at https://tinyurl.com/y6hygoh8.

2. https://gate.d5.mpi-inf.mpg.de/webchild2/?x=hyena%23n%231

https://tinyurl.com/y6hygoh8
https://gate.d5.mpi-inf.mpg.de/webchild2/?x=hyena%23n%231
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2. Related Work

Manually compiled CSK. The Cyc project (Lenat, 1995) project pursued the goal
of compiling a comprehensive machine-readable collection of human knowledge into logi-
cal assertions. The result comprised both encyclopedic and commonsense knowledge. The
WordNet project (Miller, 1995) organized word senses into lexical relations like synonymy,
antonymy, and hypernymy/hyponymy (i.e., subsumption). WordNet can serve as a tax-
onomic backbone for CSK, but there are also more recent alternatives such as WebIsA-
LOD (Hertling and Paulheim, 2017) derived from Web contents. ConceptNet extended
the Cyc and WordNet approaches by collecting CSK triples from crowdworkers, for about
20 broad predicates (Speer and Havasi, 2012). It is the state of the art for large-scale
CSK. Atomic (Sap et al., 2018) is a crowdsourcing project compiling knowledge on human
activities; it is more refined than ConceptNet but even sparser.

The most popular knowledge base today, Wikidata (Vrandečić and Krötzsch, 2014),
contains both encyclopedic knowledge about notable entities and some CSK cast into RDF
triples. However, the focus is on individual entities, and CSK is very sparse.

Web-extracted CSK. The reliance on human input limits the scale and scope of the
above mentioned projects. Automatic extraction from Web contents can potentially achieve
much higher coverage. The WebChild project (Tandon et al., 2014, 2017) extracted ca. 10
million SPO statements from books and image tags. Its rationale was to capture many
plausible properties that hold for some instances of a concept, with a long tail of noisy,
puzzling or invalid statements. Its approach was to identify typical statements by thresh-
olding on confidence scores. However, these scores reflect different aspects that cannot be
disentangled by mere thresholding; most critically, they are affected by the reporting bias of
Web sources (Gordon and Durme, 2013). Therefore, a high-confidence statement could still
be atypical (e.g., snakes attack humans). TupleKB (Mishra et al., 2017), part of the Mosaic
project, contains ca. 280k statements on 8th-grade elementary science towards tackling the
school exam challenge (Schoenick et al., 2017). It builds on similar sources as WebChild,
but prioritizes precision over recall by supervised cleaning steps. On the downside, its
coverage is much lower. Quasimodo (Romero et al., 2019) is a recent CSK collection, built
by extraction from QA forums and web query logs, with ca. 4.6 million statements. It
combines multiple cues into a regression-based corroboration model for ranking and aims
to identify salient statements, but the model is limited by its one-dimensional scoring.

Common to these projects is that their quantitative scoring of CSK statements is based
on extraction confidence only. Simply thresholding on these scores cannot bring out the
refined facets of typicality and salience.

Modalities of knowledge. Classical works on epistemic and modal logics (see, e.g., (Fa-
gin et al., 1995; Gabbay et al., 2003)), already proposed to add modalities for statements
that hold always or sometimes. Early work on knowledge acquisition from a computational
linguistics perspective (Schubert, 2002; Schubert and Tong, 2003) refined these consider-
ations by extracting general versus possible propositions from text corpora. (Gordon and
Schubert, 2010) formalized this into logical modalities like all-or-most, some etc. (Zhang
et al., 2017) developed a regression model for acquiring graded modes of CSK statements,
covering the spectrum of very likely, likely, plausible, technically possible and impossible.
The model was applied to sentences for textual entailment and natural language inference
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(cf. (Bowman et al., 2015)). The resulting dataset JOCI is organized in the form of 40K
sentence pairs, rather than grouped by concepts and systematically covering their proper-
ties.

All these efforts were relatively small-scale by modern standards. Our approach follows
up on this inspiring line of works but extends their scope and scale, by including human-
perceived salience, by leveraging concept taxonomies to enhance coverage and accuracy, and
by devising a methodology that can process millions of CSK statements.

3. Multi-Faceted CSK Model

We consider simple CSK statements of the form (s, p), where s is a concept and p is a
property of this concept. We refer to s as the subject of the statement. Often, but not
necessarily, s is a single noun, such as hyenas, but multi-word phrases do occur, such as
African elephants. p values include many verb or noun phrases, such as laugh a lot or (are)
endangered species.

Unlike prior works, we do not adopt the SPO triple model, and instead combine P and
O into property, for three reasons:
(i) The split between P and O is often arbitrary. For lions : live in prides, we could either
consider live or live in as P and the rest as O, or we view live in prides as P without O.
(ii) Unlike encyclopedic KBs, CSK is so diverse that it is virtually impossible to agree
on canonicalized predicate names beyond a small set of basic properties. ConceptNet and
WebChild cover a fixed set of ca. 20 pre-specified predicates. When discounting taxonomic
and lexical relations (e.g., type-of, synonymy), this boils down to a few broad predicates:
used for, capable of, location, part of and the generic has property.
(iii) In contrast, TupleKB and Quasimodo have more than 1000 distinct predicates. The
simpler model of concept:property pairs makes all these CSK collections better comparable
by unifying their highly varying granularities.

3.1 CSK Dimensions

We organize concept-property pairs along four dimensions: plausibility (Tandon et al., 2014;
Mishra et al., 2017), typicality (Speer and Havasi, 2012; Zhang et al., 2017), salience (Romero
et al., 2019), and remarkability (information theory). These are meta-properties: each (s, p)
pair can have any of these labels and multiple labels are possible. The first three modalities
together cover the foci of most prior works on large CSK collections, whereas each of these
works emphasizes only one or two of the modalities. Remarkability is a new dimension,
motivated by our novel way of leveraging class taxonomies.

For each statement and dimension label, we compute a score and can thus rank state-
ments for a concept four times.

• Plausibility: Is the property valid at least for some instances of the concept, for at least
some spatial, temporal or socio-cultural contexts? For example, lions drink milk at some
time in their lives, and some lions attack humans.

• Typicality: Does the property hold for most (or ideally all) instances of the concept,
for most contexts? For example, most lions eat meat, regardless of whether they live in
Africa or in a zoo.
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• Remarkability: What are specific properties of a concept that sets the concept apart
from highly related concepts, like taxonomic generalizations (hypernyms in a concept
hierarchy)? For example, lions live in prides but not other big cats do this, and hyenas
eat carcasses but hardly any other African predator does this.

• Salience: When humans are asked about a concept, such as lions, bicycles or rap songs,
would a property be listed among the concept’s most notable traits, by most people?
For example, lions hunt in packs, bicycles have two wheels, rap songs have interesting
lyrics and beat (but no real melody).

Examples. Refining CSK by the four dimensions is useful for various application areas,
including language understanding for chatbots, as illustrated by the following examples:

- Plausibility helps to detect absurd statements and react adequately.

- Typicality helps a chatbot to infer missing context. For example, when the human talks
about “a documentary which showed the feeding frenzy of a pack of hyenas”, the chatbot
could ask “what kind of carcass did they feed on?”

- Remarkability can be a signal for the chatbot to infer which concept the human is talking
about. For example, a user utterance “In the zoo, the kids where fascinated by a spotted
dog that was laughing at them” could lead to chatbot to detect that this is about hyenas.

- Salience enables the chatbot to focus on key properties. For example, when talking
about lions in the zoo, the bot could ask “Did you hear the lion roar?”, or “How many
lionesses were in the king’s harem?”

4. Joint Reasoning

Overview. For reasoning over sets of CSK statements, we start with a CSK collection,
like ConceptNet, TupleKB or Quasimodo. These are in triple form with crisp subjects
but potentially noisy phrases as predicates and objects. We interpret each subject as a
concept and concatenate the predicate and object into a property. Inter-related subsets of
statements are identified by locating concepts in a large taxonomy and grouping siblings
and their hypernymy parents together. These groups may overlap. For this purpose we use
the WebIsALOD taxonomy (Hertling and Paulheim, 2017), as it has very good coverage of
concepts and captures everyday vocabulary.

Based on the taxonomy, we also generate additional candidate statements for sub- or
super-concepts, as we assume that many properties are inherited between parent and child.
We use rule-based templates for this expansion of the CSK collection (e.g., as lions are
predators, big cats and also tigers, leopards etc. are predators as well). This mitigates
the sparseness in the observation space. Note that, without the reasoning, this would be a
high-risk step as it includes many invalid statements (e.g., lions live in prides, but big cats
in general do not). Reasoning will prune out most of the invalid candidates, though.

For joint reasoning over the statements for the concepts of a group, we interpret the
rule-based templates as soft constraints, with appropriate weights.

For setting weights in a meaningful way, we leverage prior scores that the initial CSK
statements come with (e.g., confidence scores from ConceptNet), and additional statistics
from large corpora, most notably word-level embeddings like word2vec.
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In this section, we develop the logical representation and the joint reasoning method,
assuming that we have weights for statements and for the grounded instantiations of the
constraints. Subsequently, Section 5 presents techniques for obtaining statistical priors for
setting the weights.

4.1 Coupling of CSK Dimensions

Let S denote the set of subjects and P the properties. The inter-dependencies between the
four CSK dimensions are expressed by the following logical constraints.
Concept-dimension dependencies: ∀(s, p) ∈ S × P

Typical(s, p)⇒ Plausible(s, p) (1)

Salient(s, p)⇒ Plausible(s, p) (2)

Typical(s, p) ∧ Remarkable(s, p)⇒ Salient(s, p) (3)

These clauses capture the intuition behind the four facets.
Parent-child dependencies: ∀(s1, p) ∈ S × P,∀s2 ∈ children(s1)

Plausible(s1, p)⇒ Plausible(s2, p) (4)

Typical(s1, p)⇒ Typical(s2, p) (5)

Typical(s2, p)⇒ Plausible(s1, p) (6)

Remarkable(s1, p)⇒ ¬Remarkable(s2, p) (7)

Typical(s1, p)⇒ ¬Remarkable(s2, p) (8)

¬Plausible(s1, p) ∧ Plausible(s2, p)⇒ Remarkable(s2, p) (9)

(∀s2 ∈ children(s1) Typical(s2, p))⇒ Typical(s1, p) (10)

These dependencies state how properties are inherited between a parent concept and its
children in a taxonomic hierarchy. For example, if a property is typical for the parent and
thus for all its children, it is not remarkable for any child as it does not set any child apart
from its siblings.
Sibling dependencies: ∀(s1, p) ∈ S × P, ∀s2 ∈ siblings(s1)

Remarkable(s1, p)⇒ ¬Remarkable(s2, p) (11)

Typical(s1, p)⇒ ¬Remarkable(s2, p) (12)

¬Plausible(s1, p) ∧ Plausible(s2, p)⇒ Remarkable(s2, p) (13)

These dependencies state how properties of concepts under the same parent relate to each
other. For example, a property being plausible for only one in a set of siblings makes this
property remarkable for the one concept.

4.2 Grounding of Dependencies

The specified first-order constraints need to be grounded with the candidate statements in
a CSK collection, yielding a set of logical clauses (i.e., disjunctions of positive or negated
atomic statements). To avoid producing a huge amount of clauses, we restrict the ground-
ing to existing subject-property pairs and the high-confidence (>0.4) relationships of the
WebIsALOD taxonomy (avoiding its noisy long tail).
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Rule Clause ωr ωs ωe ωc

1 Plausible(car, hit wall) ∨ ¬ Typical(car, hit wall) 0.48 1 0.60 0.29
14a Plausible(bicycle, be at city) ∨ ¬ Plausible(bicycle, be at town) 0.85 0.86 1 0.73
14a Plausible(bicycle, be at town) ∨ ¬ Plausible(bicycle, be at city) 0.85 0.86 1 0.73
8 ¬ Remarkable (bicycle, transport person and thing) ∨ ¬ Typical(car, move person) 0.51 0.78 0.96 0.38

Table 1: Examples of grounded clauses with their weights (based on ConceptNet).

Expansion to similar properties. Following this specification, the clauses would ap-
ply only for the same property of inter-related concepts, for example, eats meat for lions,
leopards, hyenas etc. However, the CSK candidates may express the same or very similar
properties in different ways: lions: eat meat, leopards: are carnivores, hyenas: eat carcasses
etc. Then the grounded formulas would never trigger any inference, as the p values are
different. We solve this issue by considering the similarity of different p values based on
word-level embeddings (see Section 5). For each property pair (p1, p2) ∈ P2, grounded
clauses are generated if sim(p1, p2) exceeds a threshold t.

We consider such highly related property pairs also for each concept alone, so that we can
deduce additional CSK statements by generating the following clauses: ∀s ∈ S,∀(p, q) ∈ P2,

sim(p, q) ≥ t⇒ (Plausible(s, p)⇔ Plausible(s, q)) , (14a)

(Typical(s, p)⇔ Typical(s, q)) , (14b)

(Remarkable(s, p)⇔ Remarkable(s, q)) , (14c)

(Salient(s, p)⇔ Salient(s, q)) (14d)

This expansion of the reasoning machinery allows us to deal with the noise and sparsity in
the pre-existing CSK collections.

Weighting clauses. Each of the statements Plausible(s, p), Typical(s, p), Remarkable(s, p)
and Salient(s, p) has a prior weight based on the confidence score from the underlying CSK
collection (see Sec. 5). These priors are denoted π(s, p), τ(s, p), ρ(s, p), and σ(s, p).

Each grounded clause c has three different weights: (i) ωr, the weight of the logical
dependency from which the clause is generated, a hyper-parameter for tuning the relative
influence of different kinds of dependencies. (ii) ωs, the similarity weight, sim(p1, p2) for
clauses resulting from similarity expansion, or 1.0 if concerning only a single property. (iii)
ωe, the evidence weight, computed by combining the statistical priors for the individual
atoms of the clause, using basic probability calculations for logical operators: 1 − u for
negation and u+v−uv for disjunction with weights u, v for the atoms in a clause. The final
weight of a clause c is computed as ωc = ωrωsωe. Table 1 shows a few illustrative examples.

4.3 ILP encoding and solving

The resulting maxSAT problems are encoded into an ILP (Vazirani, 2013) (Integer Linear
Program), which in turn is relaxed into a linear program, thus allowing to exploit the theory
of reduced costs for ranking (Bertsimas and Tsitsiklis, 1997). As the resulting programs
are typically intractable, we partitioned the problem into multiple sub-problems, each rep-
resenting one concept along with its close taxonomic neighbourhood. The sub-problems
were then solved using the Gurobi Optimizer. Further details on the implementation are in
Appendix A.
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We also considered using other kinds of probabilistic-logical reasoning, such as PSL
(Bach et al., 2017), but our objective requires more than MAP inference and so would
still face tractability issues. Moreover, with the input partitioning sketched above, the
industrial-strength ILP solver gave us sufficient scalability.

5. Prior Statistics

So far, we assumed that prior scores – π(s, p), τ(s, p), ρ(s, p), σ(s, p) – are given, in order to
compute weights for the ILP or LP. This section explains how we obtain these priors. In
a nutshell, we obtain basic scores from the underlying CSK collections and their combina-
tion with embedding-based similarity, and from textual entailment and relatedness in the
taxonomy (Subsection 5.1). We then define aggregation functions to combine these various
cues (Subsection 5.2).

5.1 Basic Scores

Basic statements like (s, p) are taken from existing CSK collections, which often provide
confidence scores based on observation frequencies or human assessment (of crowdsourced
statements or samples). We combine these confidence measures, denoted score(s, p) with
embedding-based similarity between two properties, sim(p, q). Each property p is tokenized
into a bag-of-words {w1, . . . , wn} and encoded as the idf-weighted centroid of the embedding
vectors ~wi obtained from a pretrained GoogleNews word2vec model: ~p =

∑n
i=1 idf(wi) ~wi.

The similarity between two properties is the cosine between the vectors mapped into [0, 1]:

sim(p, q) = 1
2

(
〈~p,~q〉
‖~p‖‖~q‖ + 1

)
.

Confidence scores and similarities are combined into a quasi-probability:

P[s, p] =
1

Z

∑
q∈P, sim(p,q)≥t

score(s, q)× sim(q, p)

where Z is a normalization factor and t is a threshold (set to 0.75 in our implementation).
The intuition for this measure is that it reflects the probability of (s, p) being observed
in the digital world, where evidence is accumulated over different phrases for inter-related
properties such as eat meat, are carnivores, are predators, prey on antelopes etc.

We can now derive additional measures that serve as building blocks for the final priors:

• the marginals P[s] for subjects and P[p] for properties,

• the conditional probabilities of observing p given s, or the reverse; P[p | s] can be thought
of as the necessity of the property p for the subject s, while P[s | p] can be thought of
as a sufficiency measure,

• the probability that the observation of s implies the observation of p, which can be
expressed as P[s⇒ p] = 1− P[s] + P[s, p].

Beyond aggregated frequency scores, priors rely on two more components, scores from
textual entailment models and taxonomy-based information gain.

Textual entailment:
A variant of P [s ⇒ p] is to tap into corpora and learned models for textual entailment:
does a sentence such as “Simba is a lion” entail a sentence “Simba lives in a pride”? We
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Dimension Random
ConceptNet TupleKB Quasimodo Music-manual

Baseline Dice Baseline Dice Baseline Dice Baseline Dice

Plausible 0.5 0.52 0.62 0.53 0.57 0.57 0.59 0.21 0.67
Typical 0.5 0.39 0.65 0.37 0.59 0.52 0.64 0.54 0.70

Remarkable 0.5 0.52 0.69 0.50 0.54 0.56 0.56 0.49 0.74
Salient 0.5 0.54 0.65 0.59 0.61 0.53 0.63 0.51 0.65

Avg. 0.5 0.50 0.66 0.50 0.58 0.54 0.61 0.52 0.69

Table 2: Precision of pairwise preference (ppref) of Dice versus original CSK collections.
Statistically significant gains over baselines (by one-tailed t-test level α = 0.05) are in
boldface.

leverage the attention model from the AllenNLP project (Gardner et al., 2018) learned from
the SNLI corpus (Bowman et al., 2015) and other annotated text collections. This gives us
scores for two measures: does s entail p, entail(s→ p), and does p contradict s, con(s, p).

Taxonomy-based information gain:
For each (s, p) we define a neighborhood of concepts, N(s), by the parents and siblings of
s, and consider all statements for s versus all statements for N(s)− {s} as a potential cue
for remarkability. For each property p and concept set S, the entropy of p is H(p|S) =
1

XS
logXS + XS−1

XS
log XS

XS−1 where XS = |{q | ∃s ∈ S : (s, q)}|. Instead of merely count-
based entropy, we could also incorporate relative weights of different properties, but the
as a basic cue, the simple measure is sufficient. Then, the information gain of (s, p) is
IG(s, p) = H(p | {s}) −H(p | S − {s}).

5.2 Score Aggregation

All the basic scores – P[s, p], P[s | p], P[p | s], P[s⇒ p], entail(s→ p), con(s, p) and IG(s, p)
– are fed into regression models that learn an aggregate score for each of the four facets:
plausibility, typicality, remarkability and salience. The regression parameters (i.e., weights
for the different basic scores) are learned from small set of facet-annotated CSK statements,
separately, for each of the four facets. We denote the aggregated scores, serving as priors
for the reasoning step, as π(s, p), τ(s, p), ρ(s, p) and σ(s, p).

6. Experiments

We evaluated how well Dice ranks statements in four CSK collections along the four facets.
We sampled 200 subjects each with two properties per CSK collection, and asked 3 anno-
tators for their preference among the two properties on each dimension (e.g., “Which one
is more salient: lions: hunt zebras or lions: sleep at night”). We evaluated the precision in
pairwise preference (ppref) of Dice scores, compared to the original one-dimensional scores
of the input CSK collections. The results are shown in Table 2. Dice outperforms the orig-
inal rankings by a wide margin, and performs best when given a clean taxonomy as input
(Music-manual, the other datasets being based on automatically computed WebIsALOD
taxonomies). Details on experiments are in Appendix B.
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7. Discussion

Experimental results. The experiments showed that Dice can capture CSK along
the four dimensions significantly better than the single-dimensional baselines. An ablation
study highlighted that a combination of prior scoring and constraint-based joint reasoning is
highly beneficial (0.66 average ppref vs. 0.58 and 0.51 of each step in isolation, see Table 5).
We also performed an ablation study using only priors and only reasoning: both of these
variants performed substantially worse, losing 8 and 15 percentage points, respectively,
compared to the full-fledged method, with one-tailed t-test level α=0.01.

Among the dimensions, we found that plausibility was the most difficult of the four
dimensions (see Table 2). The learning of hyper-parameters showed that all constraints are
useful and contribute to the outcome of Dice, with similarity dependencies and plausibility
inference having the strongest influence. Comparing the three CSK collections that we
worked with, we observe that the crowdsourced ConceptNet is a priori cleaner and hence
easier to process than Quasimodo and TupleKB. Also, manually designed taxonomies gave
Dice a performance bost of 0.03-0.11 in ppref over the noisy WebIsALOD taxonomies.

Task difficulty. Scoring commonsense statements by dimensions beyond confidence has
never been attempted before, and a major challenge is to design appropriate and varied input
signals towards specific dimensions. Our experiments showed that Dice can approximate
the human-generated ground-truth rankings to a considerable degree (0.58-0.69 average
ppref), although a gap remains (see Table 2). We conjecture that in order to approximate
human judgments even better, more and finer-grained input signals, for example about
textual contexts of statements, are needed.

Enriched CSK data and demo. Along with this paper, we publish six datasets: the
3 CSK collections ConceptNet, TupleKB and Quasimodo enriched by Dice with scores for
the four CSK dimensions, and additional inferred statements that expand the original CSK
data by about 50% (see Appendix B.2). The datasets can be downloaded from https://

tinyurl.com/y6hygoh8. Code and a web-based UI will be made available (see Appendix C).

8. Conclusion

This paper presented Dice, a joint reasoning framework for commonsense knowledge (CSK)
that incorporates inter-dependencies between statements by taxonomic relatedness and
other cues. This way we can capture more expressive meta-properties of concept-property
statements along the four dimensions of plausibility, typicality, remarkability and salience.
This richer knowledge representation is a major advantage over prior works on CSK collec-
tions. In addition, we have devised techniques to compute informative rankings for all four
dimensions, using the theory of reduced costs for LP relaxation. We believe that such multi-
faceted rankings of CSK statements are crucial for next-generation AI, particularly towards
more versatile and robust conversational bots. Our future work plans include leveraging
this rich CSK for advanced question answering and human-machine dialogs.

https://tinyurl.com/y6hygoh8
https://tinyurl.com/y6hygoh8
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Appendix A. Implementation

A.1 Integer Linear Program

Notations. For reasoning over the validity of candidate statements, for each of the four
facets, we view every candidate statement Facet(s, p) as a variable v ∈ V, and its prior (either
τ , π, ρ or σ, see Section 5) is denoted as ωv. Every grounded clause c ∈ C, normalized into
a disjunctive formula, can be split into variables with positive polarity, c+, and variables
with negative polarity, c−.

By viewing all v as Boolean variables, we can now interpret the reasoning task as a
weighted maximum satisfiability (Max-Sat) problem: find a truth-value assignment to the
variables v ∈ V such that the sum of weights of satisfied clauses is maximized. This is a
classical NP-hard problem, but the literature offers a wealth of approximation algorithms
(see, e.g., (Manquinho et al., 2009)). Alternatively and preferably for our approach, we can
re-cast the Max-Sat problem into a problem for integer linear programming (ILP) (Vazirani,
2013) where the variables v become 0-1 decision variables. Although ILP is more general
and potentially more expensive than Max-Sat, there are highly optimized and excellently
engineered methods available in software libraries like Gurobi (Gurobi Optimization, 2019).
Moreover, we are ultimately interested not just in computing accepted variables (set to 1)
versus rejected ones (set to 0), but want to obtain an informative ranking of the candidate
statements. To this end, we can relax an ILP into a fractional LP (linear program), based
on principled foundations (Vazirani, 2013), as discussed below. Therefore, we adopt an ILP
approach, with the following objective function and constraints:

max
∑
v∈V

ωvv +
∑
c∈C

ωcc (15)

under the constraints:

∀c ∈ C ∀v ∈ c+ c− v ≥ 0 (16a)

∀c ∈ C ∀w ∈ c− c+ w − 1 ≥ 0 (16b)

∀c ∈ C
∑
v∈c+

v +
∑
w∈c−

(1− w)− c ≥ 0 (16c)

∀v ∈ V v ∈ [0, 1] (16d)

∀c ∈ C c ∈ [0, 1] (16e)

Each clause c is represented as a triple of ILP constraints, where Boolean operations ¬ and
∨ are encoded via inequalities.

A.2 Ranking of CSK Statements

The ILP returns 0-1 values for the decision variables; so we can only accept or reject a
candidate statement. Relaxing the ILP into an ordinary linear program (LP) drops the
integrality constraints on the decision variables, and would then return fractional values for
the variables. Solving an LP is typically faster than solving an ILP.

The fractional values returned by the LP are not easily interpretable. We could employ
the method of randomized rounding (Raghavan and Thompson, 1987): for fractional value
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x ∈ [0, 1] we toss a coin that shows 1 with probability x and 0 with probability 1 − x.
This has been proven to be a constant-factor approximation (i.e., near-optimal solution) on
expectation.

However, we are actually interested in using the relaxed LP to compute principled and
informative rankings for the candidate statements. To this end, we leverage the theory of
reduced costs, aka. opportunity costs (Bertsimas and Tsitsiklis, 1997). For an LP of the
form minimize cTx subject to Ax ≤ b and x ≥ b with coefficient vectors c, b and coefficient
matrix A, the reduced cost of variable xi that is zero in the optimal solution is the amount
by which the coefficient ci needs to be reduced in order to yield an optimal solution with
xi > 0. This can be computed for all x as c−AT y. For maximization problems, the reduced
cost is an increase of c. Modern optimization tools like Gurobi directly yield these measures
of sensitivity as part of their LP solving.

We use the reduced costs of the xi variables as a principled way of ranking them; lowest
cost ranking highest (as their weights would have to be changed most to make them positive
in the optimal solution).
As all variables with reduced cost zero would have the same rank, we use the actual variable
values (as a cue for the corresponding statement or dependency being satisfied) as a tie-
breaker.

A.3 Scalability

LP solvers are not straightforward to scale to cope with large amounts of input data. For
reasoning over all candidate statements in one shot, we would have to solve an LP with
millions of variables. We devised and utilized the following technique to overcome this
bottleneck in our experiments.

The key idea is to consider only limited-size neighborhoods in the taxonomic hierarchy
in order to partition the input data. In our implementation, to reason about the facets for a
candidate statement (s, p), we identify the parents and siblings of s in the taxonomy and then
compile all candidate statements and grounded clauses where at least one of these concepts
appears. This typically yields subsets of size in the hundreds or few thousands. Each of
these forms a partition, and we generate and solve an LP for each partition separately.
This way, we can run the LP solver on many partitions independently in parallel. The
partitions overlap in terms of interrelated statements, but each (s, p) is associated with a
primary partition with this statement’s specific neighborhood.

Appendix B. Details on Experiments

We evaluate three aspects of the Dice framework: (i) accuracy in ranking statements along
the four CSK facets, (ii) run-time and scalability, (iii) the ability to enrich CSK collections
with newly inferred statements. The main hypothesis under test is how well Dice can rank
statements for each of the four CSK facets. We evaluate this by obtaining crowdsourced
judgements for a pool of sample statements.
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CSK collection #subjects #statements

Quasimodo 13,387 1,219,526
ConceptNet 45,603 223,013
TupleKB 28,078 282,594

Table 3: Input CSK collections.

CSK collection #nodes #parents/node #siblings/node

Quasimodo 11148 15.33 3627.8
ConceptNet 41451 1.15 63.7
TupleKB 26100 2.14 105.1
Music-manual 8 1.68 3.4

Table 4: Taxonomy statistics.

B.1 Setup

Datasets. We use three CSK collections for evaluating the added value that Dice pro-
vides: (i) ConceptNet, a crowdsourced, sometimes wordy collection of general-world CSK.
(ii) Tuple-KB, a CSK collection extracted from web sources with focus on the science
domain, with comparably short and canonicalized SPO triples. (iii) Quasimodo, a web-
extracted general-world CSK collection with focus on salience. Statistics on these datasets
are shown in Table 3.

To construct taxonomies for each of these collections, we utilized the WebIsALOD
dataset (Hertling and Paulheim, 2017), a web-extracted noisy set of ranked subsumption
pairs (e.g., tiger isA big cat - 0.88, tiger isA carnivore - 0.83). We prune out long-tail
noise by setting a threshold of 0.4 for the confidence scores that WebIsALOD comes with.
To evaluate the influence of taxonomy quality, we also hand-crafted a small high-quality
taxonomy for the music domain, with 10 concepts and 9 subsumption pairs, such as rapper

being a subclass of singer. Table 4 gives statistics on the taxonomies per CSK collection.
Differences between #nodes in Table 4 and #subjects in Table 3 are caused by merging
nodes on hypernymy paths without branches (#children=1).

Annotation. To obtain labelled data for hyper-parameter tuning and as ground-truth for
evaluation, we conducted a crowdsourcing project using Amazon Mechanical Turk (AMT).
For salience, typicality and remarkability, we sampled 200 subjects each with 2 properties
from each of the CSK collections, and asked annotators for pairwise preference with regard
to each of the three facets, using a 5-point Likert scale. That is, we show two statements
for the same subject, and the annotator could slide on the scale between 1 and 5 to indicate
the more salient/typical/remarkable statement. For the plausibility dimension, we sampled
200 subjects each with two properties, and asked annotators to assess the plausibility of
individual statements on a 5-point scale. Then we paired up two statements for the same
subject as a post-hoc preference pair. The rationale for this procedure is to avoid biasing the
annotator in judging plausibility by showing two statements at once, whereas it is natural
to compare pairs on the other three dimensions.

In total, we had 4 × 4 × 200 = 3200 tasks, each given to 3 annotators. The final
scores for each statement and facet were the averages of the three numerical judgments.
Regarding inter-annotator agreement, we observed a reasonably low standard deviation of
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0.81/0.92/0.98/0.92 (over the scale from 1 to 5) for the dimensions plausibility/typicality/-
remarkability/salience on ConceptNet, with similar values on the other CSK collections.
When removing indeterminate samples, with avg. score between 2.5 and 3.5, and interpret-
ing annotator scores as binary preferences, inter-annotator agreement was fair to moderate,
with Fleiss’ Kappa values of 0.31, 0.30, 0.25 and 0.48 for plausibility, typicality, remarka-
bility and salience, respectively.

Guidelines for annotators. The AMT workers were given informal explanations of the
facets to be assessed, along with clear examples and justifications for each facet:

- For typicality, birds can fly is more typical than birds eat bread, because only birds in
contact with humans (e.g., in city parks) can eat bread, but almost all birds can fly.

- For salience, birds have feathers is more salient than birds have bones, because the former
is way more characteristic and useful in describing a bird by the color, length and shape
of its feathers.

- For remarkability, birds whistle in the forest is more remarkable than birds lay eggs,
because other animals like fish and reptiles lay eggs as well, whereas whistling in the
forest is unique for birds.

Evaluation Metrics. In the actual evaluation, we used withheld pairwise annotations for
statements along the dimensions plausibility, typicality, remarkability and salience as ground
truth, and compared, for each system score, for how many of these pairs its scores implicated
the same ordering, i.e., measured the precision in pairwise preference (ppref) (Carterette
et al., 2008).

Hyper-parameter tuning. The 800 labeled statements per CSK collection were split
into 70% for hyper-parameter optimization and 30% for evaluation. We performed two
hyper-parameter optimization steps. In step 1, we learned the weights for aggregating the
basic scores by a regression model based on interpreting pairwise data as single labels (i.e.,
the preferred property is labelled as 1, the other one as 0). In step 2, we used Bayesian op-
timization to tune the weights of the constraints. As exhaustive search was not possible, we
used the Tree-structured Parzen Estimator (TPE) algorithm from the Hyperopt (Bergstra
et al., 2013) library. We used the 0-1 loss function on the ordering of the pairs as metric,
and explored the search space in two ways: (i) discrete exploration space {0, 0.1, 0.5, 1},
followed by (ii) continuous exploration space of radius 0.2 centered on the value selected in
the previous step. For ConceptNet, constraints were assigned an average weight of 0.404,
with the highest weights for: (14) Similarity constraints (weight 0.85), (6) Plausibility in-
ference (weight 0.66) and (13) Sibling implausibility implying remarkability (weight 0.60).
All constraints were assigned non-negligible positive weights; so they are all important for
joint inference.

B.2 Results

Quality of rankings. Table 2 shows the main result of our experiments: the precision
in pairwise preference (ppref) scores (Carterette et al., 2008), that is, the fraction of pairs
where Dice or a baseline produced the same ordering as the crowdsourced ground-truth. As
baseline, we rank all statements by the confidence scores from the original CSK collections,
which implies that the ranking is identical for all four dimensions. As the table shows,
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Priors
only

Constraints
only

Both

Plausible 0.54 0.51 0.62
Typical 0.53 0.42 0.65

Remarkable 0.65 0.57 0.69
Salient 0.56 0.52 0.65

Avg. 0.58 0.51 0.66

Table 5: Ablation study using ConceptNet as input.

Ranking Existing New statements
dimension statements 25% 50% 100%

Plausible
3.44

3.54 3.43 3.41
Typical 3.27 3.31 3.26

Table 6: Plausibility (Likert-scale values) of top-ranked newly inferred statements with
ConceptNet as input.

Subject Novel properties

sculpture be at art museum, be silver or gold in color
athlete requires be good sport, be happy when they win
saddle be used to ride horse, be set on table

Table 7: Examples of new statements inferred by Dice with ConceptNet as input.

Subject Property
Baseline Dice
CN-score plausible typical remarkable salient

snake be at shed 0.46 0.29 0.71 0.29 0.18
snake be at pet zoo 0.46 0.15 0.29 0.82 0.48
snake bite 0.92 0.58 0.13 0.61 0.72
lawyer study legal precedent 0.46 0.25 0.73 0.37 0.18
lawyer prove that person be guilty 0.46 0.06 0.47 0.65 0.40
lawyer present case 0.46 0.69 0.06 0.79 0.75
bicycle requires coordination 0.67 0.62 0.40 0.36 0.35
bicycle be used to travel quite long distance 0.46 0.30 0.20 0.77 0.64
bicycle be power by person 0.67 0.19 0.33 0.66 0.55

Table 8: Anecdotal examples from Dice run on ConceptNet.
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Dice consistently outperforms the baselines by a large margin of 7 to 18 percentage points.
In Table 2 all numbers in boldface are statistically significant by one-tailed t-test level
α = 0.05. It is also notable that scores in the original ConceptNet and TupleKB are
negatively correlated with typicality (values lower than 0.5), pointing out a substantial
fraction of valid but not exactly typical properties in these pre-existing CSK collections.

Ablation study. To study the impact of statistical priors and constraint-based reasoning,
we compare two variants of Dice: (i) using only priors without the reasoning stage, and
(ii) using only the constraint-based reasoning with all priors set to 0.5. The resulting ppref
scores are shown in Table 5. In isolation, priors and reasoning perform 8 and 15 percentage
points worse than the combined Dice method. These differences are statistically significant
for one-tailed t-test level α=0.01. This clearly demonstrates the importance of both stages
and the synergistic benefit from their interplay.

Enrichment potential. All CSK collections are limited in their coverage of long-tail
concepts. By exploiting the taxonomic and embedding-based relatedness between different
concepts, we can generate candidate statements that were not observed before (e.g., because
online contents rarely talk about generalized concepts like big cats, and mostly mention only
properties of lions, leopards, tigers etc.). As mentioned in Section 4.2, templates can be
used to generate candidates. We apply templates for all parents, grand-parents, siblings
and children of a concept to generate candidate statements. These noisy candidates are
then fed into Dice reasoning together with the statements that are actually contained in
the existing CSK collections. This yields cleaner subsets of new statements.

To evaluate the quality of the Dice output for such “unobserved” statements, we ran-
domly sampled 10 ConceptNet subjects, and grounded the reasoning framework for these
subjects for all properties observed in their taxonomic neighbourhood (i.e., parents and
siblings). We then asked annotators to assess the plausibility of 100 sampled statements.

To compute the quality of Dice scores, we consider the top-ranked statements by pre-
dicted plausibility and by typicality, where we vary the recall level: number of statements
from the ranking in relation to the number of statements that ConceptNet contains for the
sampled subjects. The Likert-scale values from AMT-based assessment are shown in Table 6
for recall 25%, 50% and 100%, that is up to doubling the size of ConceptNet for the given
subjects. As one can see, Dice can expand the pre-existing CSK by 25% without losing
in quality, and even up to 100% expansion the decrease in quality is negligible. Table 7
presents anecdotal statements absent in ConceptNet.

Run-Time. All experiments were run on a cluster with 40 cores and 500 GB memory.
Hyper-parameter optimization took 10-14 hours for each of the three CSK inputs. Com-
puting the four-dimensional scores for all statements took about 3 hours, 3 hours and 24
hours for ConceptNet, TupleKB and Quasimodo, respectively.

The computationally most expensive steps are the semantic similarity computation and
the LP solving. For semantic similarity computation, a big handicap is the verbosity and
hence diversity of the phrases for properties (e.g., “live in the savannah”, “roam in the
savannah”, “are seen in the African savannah”, “can be found in Africa’s grasslands” etc.).
We observed on average 1.55 statements per distinct property for ConceptNet, and 1.77
for Quasimodo. Therefore, building the input matrix for the LP is very time-consuming.
For LP solving, the Gurobi algorithm has polynomial run-time in the number of variables.
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However, we do have a huge number of variables. Empirically, we need to cope with about
#constraints × #statements1.2 variables.

Anecdotal examples. Table 8 gives a few anecdotal outputs with scores returned by
Dice. Note that the scores produced do not represent probabilities, but dimension-wise
ranks (i.e., we percentile-normalized the scores produced by Dice, as they have no inherent
semantics other than ranks). For instance, be at shed was found to be much more typical
than be at pet zoo for snake, while salience was the other way around. Note also the low
variation in ConceptNet scores, i.e., in addition to being unidimensional, this low variance
makes any ranking difficult.

Appendix C. Web demonstrator

The results of running Dice on ConceptNet and Quasimodo are showcased in an interactive
web-based demo. The interface shows original scores from these CSK collections as well
as the per-dimension scores computed by Dice. Users can explore the values of individual
cues, the priors, the taxonomic neighborhood of a subject, and the clauses generated by the
rule grounding. The demo ready to be deployed online; for anonymous reviewing, we only
give screenshots in Figure 1.

From a landing page (Fig. 1(a)), users can navigate to individual subjects like band
(Fig. 1(b)). On pages for individual subjects, taxonomic parents and siblings are shown
at the top, followed by commonsense statements from ConceptNet and Quasimodo. For
each statement, its normalized score or percentile in its original CSK collection, along with
scores and percentiles along the four dimensions as computed by Dice, are shown. Colors
from green to red highlight to which quartile a percentile value belongs. On inspecting a
specific statement, e.g., band: hold concert (Fig. 1(c)), one can see related statements used
for computing basic scores, along with the values of the priors and evidence scores. Further
down on the same page (Fig. 1(d)), the corresponding materialized clauses from the ILP,
along with their weight ωc, are shown.
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(a) Demo landing page. (b) List of statements for subject band.

(c) Scores and neighbourhood for statement
band: hold concert.

(d) Materialized clauses for statement band:
hold concert.

Figure 1: Screenshots from the web-based demonstration platform.
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