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Abstract

The vast and rapidly expanding volume of biomedical literature makes it difficult for
domain experts to keep up with the evidence. In this work, we specifically consider the
exponentially growing subarea of genetics in cancer. The need to synthesize and centralize
this evidence for dissemination has motivated a team of physicians to manually construct
and maintain a knowledge base that distills key results reported in the literature1. This
is a laborious process that entails reading through full-text articles to understand the
study design, assess study quality, and extract the reported risk estimates associated with
particular hereditary cancer genes (i.e., penetrance, defined as the risk of cancer with a
pathogenic variant in a germline cancer susceptibility gene). In this work, we propose
models to automatically surface key elements from full-text cancer genetics articles, with
the ultimate aim of expediting the manual workflow currently in place.

We propose two challenging tasks that are critical for characterizing the findings re-
ported in penetrance studies: (i) Extracting snippets of text that describe ascertainment
mechanisms, which in turn inform whether the population studied may introduce bias ow-
ing to deviations from the target population; (ii) Extracting reported risk estimates (e.g.,
odds or hazard ratios) associated with specific germline mutations. The latter task may be
viewed as a joint entity tagging and relation extraction problem. To train models for these
tasks, we induce distant supervision over tokens and snippets in full-text articles using the
manually constructed knowledge base. We propose and evaluate several model variants,
including a transformer-based joint entity-relation extraction model to extract <germline
mutation, risk-estimate> pairs for different cancer types. We observe strong empirical
performance, highlighting the practical potential for such models to aid KB construction
in this space. We ablate components of our model, observing, e.g., that a joint model for

1. https://ask2me.org/index.php

https://ask2me.org/index.php
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<germline mutation, risk-estimate> fares substantially better than a pipelined ap-
proach.

1. Introduction

The published evidence base concerning genetic factors in cancer is vast and growing rapidly.
A simple search for “gene cancer study” on PubMed2 yields over 238,000 research articles
(including clinical trial reports, meta-analyses, and other types of research); about 16,500 of
these were published in 2019 alone. This torrent of unstructured findings makes it difficult
for domain experts to navigate and make sense of the evidence. Consequently, there is a
critical need for tools designed to help clinicians monitor and synthesize the literature on
genetics in cancer [Bao et al., 2019].

Indeed, the medical domain relies on centralization of knowledge [Collins and Varmus,
2015, Landrum et al., 2017, Forbes et al., 2017], because sorting through the vast published
literature is too onerous for individual clinicians. Therefore, structured knowledge bases
(KBs) derived from the literature have an important role to play in medicine generally, and
in tracking progress and disseminating findings relevant to cancer genetics specifically.

Biomedical Natural Language Processing (NLP) methods provide a means of extracting
key information from the scientific and biomedical literature in general [Kim, 2017, Luan
et al., 2017]. And there has been some work specifically aiming to aid medical evidence
synthesis via NLP techniques [Lehman et al., 2019, Marshall et al., 2018, Cohen et al.,
2006, Brockmeier et al., 2019, Schmidt et al., 2020]. More specific to this work, a few efforts
have focused on models for identifying literature relevant to cancer susceptibility [Wallace
et al., 2012, Bao et al., 2019]. This paper extends state-of-the-art NLP technologies to aid
identification and extraction of relevant information from biomedical research articles on
gene-cancer associations. We envision a semi-automated process in which these models aid
clinicians to facilitate efficient maintenance of a genetics in cancer knowledge base.

The main contributions of this work are as follows.

1. To our knowledge, this is the first effort to (semi-)automate extraction of key evidence
from full-text cancer genetics papers. We introduce the tasks of extracting ascertain-
ment mechanisms and reported risk metrics for particular mutations from the genetics
in cancer literature. We propose distantly supervised strategies for learning models
for one of these tasks. In contrast to most prior work, we operate over full-text articles
rather than abstracts only; this is critical as key information will not always be found
in abstracts. We envision these models aiding domain experts (with whom this is a
collaborative effort) in maintaining a KB, rather than fully automating this process.

2. We propose and evaluate a joint model for extraction of relevant reported (numerical)
measures of cancer risk and the germline mutations to which they correspond. We
realize strong empirical performance using this approach, and perform ablations to
investigate which components drive this.

2. A repository of biomedical literature: https://www.ncbi.nlm.nih.gov/pubmed/.

https://www.ncbi.nlm.nih.gov/pubmed/
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PMID Gene Cancer Race OR RR HR Max Age Total Carriers

29922827 BRCA2 Pancreatic Multiple 6.2 - - - 370
29922827 TP53 Pancreatic Multiple 6.7 - - - 31
27595995 CHEK2 Breast White 3.39 - - 75 11
21145788 MSH2 Colorectal Multiple - - 0.49 -

Table 1: Entries from the structured data currently manually curated by clinicians via man-
ual reading of and extraction from cancer-genetics literature. This is inexhaustive,
the resource also contains elements such as the carriers classified by disease-type,
age-risk, paper type, and the ascertainment sentences. The idea is to design models
that consume full-text articles and extract these elements.

This is joint work with specialists at the Massachusetts General Hospital (MGH) who
have up to now been manually synthesizing the medical literature associated with gene-
cancer associations into a KB (see Table 1 for an illustrative, condensed fragment). This
is a valuable yet tedious and time-consuming endeavor. We identify targets which, if suc-
cessfully extracted automatically, could greatly reduce the human labor required for upkeep
of this KB. We show that by extending state-of-the-art NLP models and training these
via distant supervision induced from the existing KB, we can achieve strong performance,
which in turn suggests that such models may significantly reduce manual workload with-
out compromising the ability to extract relevant information (i.e., without sacrificing the
accuracy and comprehensiveness of the resultant KB).

Our effort here naturally extends prior work that used NLP to identify literature relevant
to genetics in cancer [Bao et al., 2019]. However, we focus on extraction of key information
from the full-texts of such articles, once identified. Following discussions with the specialist
team and a data exploration phase, we identified two tasks corresponding to elements that
were both highly relevant to the medical researchers (i.e., key elements of their KB) and
potentially extractable from full-texts using natural language technologies.

1. Identify snippets that correspond to ascertainment of populations studied in the un-
derlying research described in articles. Ascertainment is a complex concept; here we
adopt a working definition such that snippets are considered relevant to ascertainment
if they answer any of the following key questions.

• What was the source of the study population, including geographical locations,
ethnicities, and source cohorts (e.g., cancer registries, hospital-based retrospec-
tive cohorts, and community-based prospective cohorts)?

• How many patients (cases) and/or controls were being enrolled?

• What were the inclusion and exclusion criteria when enrolling in the study popu-
lation? For example, a study may only enroll early-onset breast cancer patients,
or patients with a strong family history of cancer.

We aim to identify snippets of text that convey this information.
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2. Perhaps the most important data elements in cancer in genetics studies are the risk
estimates (i.e. penetrance) associated with a particular pathogenetic germline muta-
tion variant and a specific type cancer (e.g., BRCA2 mutation) type. This information
will be reported numerically using a standard metric that quantifies comparative risk,
typically one of: Odds Ratio (OR), Relative Risk (RR), or Hazard Ratio (HR). These
are often reported in free text and only implicitly reference the corresponding genetic
variant, for example: “odds ratio for basal cell carcinoma was higher (OR=3.8; 95%
CI, P = 0.002)”. We provide more details in Section 2.

The remainder of this paper is structured as follows: We start by providing an overview of
our approach in Section 2, explaining how the data was curated (2.2) and (distantly) labeled
(2.3). Section 3 and Section 4 describe our experimental setup and our results, respectively.
We summarize prior related work in Section 5. Finally, we conclude in Section 6 with a
discussion of the implications of this work and possible future directions in this area.

2. Methods

2.1 Overview

Given a Portable Document Format (PDF) full-text research article on gene-cancer asso-
ciations, our system aims to extract sentences that describe the ascertainment mechanism
for the underlying study, and spans that report the risk metrics for the specific gene-cancer
association. For these tasks we define two pipelines that both operate over sentences com-
prising full-texts.

2.2 Data and Targets

Our clinical collaborators provided a risk object database (ROD) D comprising data that
they manually extracted from 597 penetrance papers reporting gene-cancer associations, i.e.,
D contains the sought-after KB elements for these papers. The semi-structured elements
in D were manually extracted from full-text articles, to which we also have access. The
majority of these (588) are PDFs, the remaining (9) are in HTML format.

The sentences pertaining to ascertainment (as described in Section 1) within D were
identified as key targets for extraction. We provide examples of these below. In addition
to sentences describing what demographic population was studied, ascertainment sentences
included those indicating “adjustments” for ascertainment. For example, the following
sentences were distantly labeled as positive for ascertainment.

• A hospital-based study or a panel testing analysis with well-matched cases and con-
trols, such as:

1. A control population was defined from the National Danish Civil Registration Sys-
tem, with five population controls, matched on sex and year of birth, for mutation
carriers as well as first-degree relatives.

2. For age-adjusted analysis, the projected U.S. population (year 2000) was used;
84% of the 3,399 individuals were white.
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Text Targets

These included CDKN2A, with mutations in 0.30%
of cases and 0.02% of controls (OR, 12.33; 95% CI, 5.43-25.61);
TP53, with mutations in 0.20% of cases and 0.02%
of controls (OR, 6.70; 95% CI, 2.52-14.95);
MLH1, with mutations in 0.13% of cases and 0.02%
of controls (OR, 6.66; 95% CI, 1.94-17.53);
BRCA2, with mutations in 1.90% of cases and 0.30%
of controls (OR, 6.20; 95% CI, 4.62- 8.17);
ATM, with mutations in 2.30% of cases and 0.37%
of controls (OR, 5.71; 95% CI, 4.38-7.33);

<CDKN2A, 12.33, positive>
<TP53, 6.70, positive>
<MLH1, 6.66, positive>
<BRCA2, 6.20, positive>
<BRCA2, 4.62, negative>
<CDKN2A, 6.70, negative>

Table 2: Example of a snippet reporting risks associated with germline variants (left) and
corresponding extraction or relation targets (right).

• A proband-based/family-based study with appropriate ascertainment adjustment:
such as GRL, modified segregation analysis, for example:

1. To adjust for ascertainment, we used an ascertainment assumption–free approach
in which we evaluated each family separately

2. Once we verified that the SIR estimates were not influenced by such cohort-effects,
our final analyses were based on population rates specific for each country, sex,
and 5-year age group averaged from 1950 to 2009 which were applied to all follow-
up, regardless of calendar year.

The second key elements that we aim to extract are the reported risks associated with
particular germline mutations. These are typically provided as Odds, Risk, or Hazard Ratios
(ORs, RRs, HRs), i.e., floating point numeric values. These values are arguably the main
results being conveyed by the article. There can be multiple metrics reported throughout
the entire article, corresponding to different gene-cancer associations (see Table 2). Models
must therefore exploit context to disambiguate to which gene a given metric corresponds.
We derive data about these risk estimates through direct supervision as they appear in the
risk object database provided to us by the medical experts.

2.3 Deriving Distant Supervision for Ascertainment Classification

Rather than direct supervision (explicit labels on snippets of text extracted from PDFs),
we have access only to the database manually compiled by physicians thus far (D), which
comprises semi-structured elements, pertaining to ascertainment, extracted from a set of
articles. We aim to induce distant supervision over article snippets by heuristically matching
these to entries in D.
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To this end, we retrieved the 597 full-texts (mostly PDFs) associated with all entries
in D. We processed PDFs using Grobid3 to generate structured XML documents. These
XML encodings are reasonably structured, and we were able to compose simple rules to
extract all article text (but not tables and figures).

Next, we extracted sentences from all article sections (save for the abstract) using
sciSpacy.4 We then constructed three different representations of these sentences:

1. Simple Bag-of-Words. Average of vector representations obtained via sciSpacy,
for every token in a given sentence. We fix the embedding size to 300.

2. Weighted TF-IDF. Weighted average of token vectors with their respective TF-IDF
scores [Schmidt, 2019].

3. Contextual Representation. We pass sentence tokens through SciBERT [Beltagy
et al., 2019] (this is a variant of BERT [Devlin et al., 2018] pre-trained on scien-
tific corpora) and take as a sentence representation the 768-dimensional [CLS] token
embedding.

Once these sentence representations are obtained we generate ‘positive’ labels for sen-
tences corresponding to descriptions of ascertainment mechanisms. To derive these pseudo-
labels we compare all sentence representations from a document Di, to its true (manually
extracted) ascertainment mechanism snippet, Ai, using cosine distance:

cos(s,Ai) =
sAi

‖t‖‖Ai‖
=

∑n
j=1 sjAij√∑n

j=1 (sj)2
√∑n

j=1 (Aij)2
(1)

Extracted ascertainment mechanisms often correspond to more than one sentence in a
document (on average, there are 2.6 of these per document). Therefore, we retain the top
three sentences with the highest similarity scores, and we mark these as ‘positives’. One
issue with this approach is that using a similarity measure often yields ‘false positives’ that
are more general than what we are after. We discus this further in the Appendix.

2.4 Joint Entity-Relation Extraction to Determine Risk Estimates

A key piece of information reported in genetics in medicine studies is the reported risk ratio
for particular germline mutations. In the risk object database (D), a given row corresponds
to one cancer risk estimate for a specific <germline mutation, risk-estimate> pair and
one penetrance paper may correspond to multiple such rows inD. Therefore, our second task
is to extract these metrics (Odds/Risk/Hazard Ratio) and identify the germline mutation to
which they correspond. We perform this extraction over individual sentences independently.

Figure 1 provides a schematic of our approach. For this task we propose a transformer-
based model that jointly extracts the relevant entities (risk-estimates, genes) and predicts
their relations (positive, negative) directly from spans within individual sentences.

3. Grobid is a tool for extracting and parsing PDFs into structured XML/TEI encoded documents
with a particular focus on technical and scientific publications: https://github.com/kermitt2/

grobid-client-python.
4. A sister NLP library to SpaCy (https://spacy.io/) built for biomedical text: https://allenai.github.

io/scispacy/

https://github.com/kermitt2/grobid-client-python
https://github.com/kermitt2/grobid-client-python
https://spacy.io/
https://allenai.github.io/scispacy/
https://allenai.github.io/scispacy/
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Sentence-level Contextual 
Representations 

from Transformer
Linear layer

Unified, joint entity-relation 
structure to extract 

<germline-mutation, risk> tuples

Grobid / pre-prorcessing

<germline-mutation, risk>

<germline-mutation, risk>

A KRAS-Variant in Ovarian 
Cancer Acts as a Genetic 
Marker of Cancer Risk
Abstract: Ovarian Cancer is the single most deadly form of 
women’s cancer, typically presented as an advanced disease at 
diagnosis in part due to a lack of known risk factors or known genetic 
marks of risk. 

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod 

tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim 
veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea 
commodo consequat. Duis aute irure dolor in reprehenderit in voluptate 
velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat 
cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est 
laborum.
Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod 
tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim 
veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea 
commodo consequat. Duis aute irure dolor in reprehenderit in voluptate 
velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat 
cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est 
laborum.
Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod 
tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim 
veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea 
commodo consequat. Duis aute irure
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Figure 1: A schematic of our joint model for extracting germline-mutations and correspond-
ing risk metrics. See text for additional description.

Concretely, an input document X is treated as a set of sentences X =s1, s2, s3. . . .s|X|.
The task of entity recognition entails predicting a label ei (here: germline mutation,
risk-estimate, or none) for each token within a sentence. Relation extraction involves
predicting whether a <germline mutation, risk-estimate> pair is a positive (true) re-
lation or not.

Our model considers fixed length (10-15) spans within sentences and classifies each
token into possible entity types. The model then classifies these entity-types into relations
(positive or negative).

We use SciBERT [Beltagy et al., 2019] to generate token level representations. We sum
these and the [CLS] token embedding to incorporate overall context, yielding the final input
for entity classification:

ei = softmax(We · ([CLS] + ti)) + be) (2)

For every pair of entity candidates (ex, ey), where neither is of type none, our next task
involves predicting the best relation type rx,y. To form a combined localized representation
of (ex, ey), we take the sum of the embeddings from ex through ey and then take the element-
wise product of this representation with the [CLS] token representing the span. We pass this
output through a fully connected layer followed by a sigmoid, yielding a binary probability
prediction. Therefore, if i and j correspond to the token indices of entities ex and ey
respectively, then the predicted probability corresponding to rx,y is:

rx,y = σ(Wr · ([CLS] ·
j∑
k=i

(ek) + br) (3)

Much like [Luan et al., 2019], our loss function is the (unweighted) sum of the log-
likelihood of the two tasks: ∑

(D,R∗,E∗)εX

{logP(R∗|E,D) + logP(E∗|D)} (4)
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Where E∗ and R∗ are the true entities and relations, respectively. X is the collection of all
training documents.

Simple, disjoint model for entity-relation extraction: Does joint training yield im-
proved performance? To investigate this we also train two simple disjoint models, based on
[Shi and Lin, 2019], for the same task. In this approach, entity tokens are classified using
a dense layer on top of representations induced by SciBERT [Beltagy et al., 2019]. Then,
for the relation extraction task, the model takes input as [[CLS] sentence-span [SEP]

entity [SEP] entity [SEP]]. We then discard the sentence after the first [SEP] token,
preserving only the contextualized representation which is then concatenated and passed
into a fully connected network to obtain the output.

3. Experimental Setup

We use sciSpacy [Neumann et al., 2019] to carry out all text preprocessing, including
tokenization and sentence splitting. To train our transformer based models, we use the
HuggingFace [Wolf et al., 2019] transformer library in PyTorch [Paszke et al., 2019]. We’re
providing the model code along with the raw annotations of penetrance papers, indexed by
their PubMed IDs5.

Basic Data Statistics

Train Val Test* Train Val Test
Positive 10414 1838 612 Entities (g/r.e.) 2134/1549 267/194 267/193
Negative 55920 9866 6589 Entity-Relation Pairs 1549 194 193

Table 3: g/r.e corresponds to genes/risk-estimates.

Data: We obtained annotated data (Table 3) from clinicians as described in Section 2.2.
Table 3 reports basic data statistics and information about train, development, and test
set splits that we have created. Importantly, for both of our tasks, these are disjoint at the
document level, meaning that sentences in the respective splits are drawn from corresponding
unique sets of documents.

Training: For the ascertainment classification task, our best performing model on dev
data (fine-tuned, SciBERT) uses the Adam [Kingma and Ba, 2014] optimization scheme, a
batch size of 32 and a learning rate of 2e-5 over 4 epochs.

For the joint entity tagging and relation extraction task, we again use the Adam opti-
mizer, with a batch size of 16, and a linear decay learning rate schedule. The learning rate
here is 5e-5. We observe that the model peaks after 8-10 epochs. We also observe that the
same hyperparameters suffice with our disjoint entity-relation classification models.

All of our hyperparameter tuning was carried out on development sets; the results we
report are from the held out test set, unseen during model development.
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Model F1 P R MCC Acc

SVM (word2vec, BOW) 0.71 0.81 0.68 0.46 0.83
SVM (word2vec, weighted tf-idf) 0.75 0.78 0.73 0.51 0.84

Logistic Regression (word2vec, BOW) 0.68 0.72 0.65 0.39 0.78
Logistic Regression (word2vec, weighted tf-idf) 0.72 0.74 0.71 0.41 0.78

BERT (fine-tuned, uncased) 0.80 0.79 0.82 0.70 0.84
SciBERT (fine-tuned, scivocab-uncased) 0.89 0.92 0.86 0.86 0.97

Table 4: Results for the weakly supervised models on the ascertainment classification task.
Note that the test data on which we evaluate is directly labeled.

Model Entity Relation

F1 P R MCC F1 P R MCC

SVM (word2vec, d=300) 0.67 0.71 0.60 - - - - -

disjoint entity-relation extraction
BERT (uncased) 0.78 0.85 0.72 0.61 0.44 0.47 0.41 0.28

SciBERT (scivocab, uncased) 0.79 0.88 0.71 0.59 0.49 0.56 0.43 0.29

joint entity-relation extraction
BERT (uncased) 0.77 0.85 0.69 0.59 0.61 0.68 0.54 0.33

SciBERT (scivocab, uncased) 0.78 0.83 0.74 0.59 0.62 0.70 0.58 0.35

Table 5: Test set results on entity-relation extraction task

4. Results

We report results on test sets in Tables 4 and 5. For all models, we report F1 score,
precision, recall, accuracy, and matthews correlation coefficient (MCC).

For the first task of ascertainment classification, we observe that a transformer based
approach (i.e., a simple classification layer on top of SciBERT) outperforms baselines, as
one would expect. However, we were somewhat surprised by the performance difference
observed between variants initialized with BERT and SciBERT weights; the latter achieves
a 9 point absolute gain in F1, apparently demonstrating the considerable advantage afforded
by domain-specific pre-training.

For the second task of extracting <germline mutation, risk-estimate> pairs, we
observe similar performance (using SciBERT) on the entity classification task with both
joint and the pipelined approach. However, the joint model outperforms the pipelined
approach in the subsequent relation inference task, yielding a substantial difference of 13
points in F1 score. This demonstrates the promise of joint — as opposed to pipelined —
approaches for this task.

Qualitatively, we observe that our models produce high quality results, in the sense that
the ostensibly misclassified examples are ambiguous to a clinical evaluator. We provide

5. https://github.com/sominwadhwa/kbcCanGen.

https://github.com/sominwadhwa/kbcCanGen
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evidence for this along with additional ablation experiments (e.g., model sensitivity to
specific numerical tokens for risk ratio extraction) in the Appendix.

5. Related Work

Work related to this effort includes general methods for scientific information extraction
[Liu et al., 2016, Luan et al., 2019], evidence mining [Rinott et al., 2015], and the use of
distant supervision to create weakly (and noisily) labelled data at scale [Mintz et al., 2009,
Augenstein et al., 2015].

Recent work on exploiting distant supervision has focused largely on the analysis of free
text on social media [Purver and Battersby, 2012, Marchetti-Bowick and Chambers, 2012]
and on relation extraction [Riedel et al., 2010, Mintz et al., 2009, Nguyen and Moschitti,
2011]. Our work relates more to the former approaches of using heuristic and distant
supervision to induce weak, sometimes noisy, labels for a downstream task. Despite this
inherent noise, we find that we are able to exploit such weak labels to train layers on top of
modern contextualized encoder models [Devlin et al., 2018, Peters et al., 2018] pretrained
on scientific text [Beltagy et al., 2019], yielding extractors that can capture the desired
information with high fidelity. This extends past work in which weak or distant forms
of supervision have specifically been used to train models for information extraction from
scientific and biomedical texts [Quirk and Poon, 2016, Jain et al., 2016, Wallace et al., 2016,
Norman et al., 2019].

Designing language technologies for (semi-)automated information extraction in the
biomedical domain remains an active area of research [Liu et al., 2016, Patel et al., 2018].
For example, there is a line of related work designing and evaluating extraction methods
to aid biomedical literature synthesis [Jonnalagadda and Petitti, 2013, Kiritchenko et al.,
2010, Nye et al., 2018]. Much of the recent work in this space has involved using neural
models to extract entities [Greenberg et al., 2018], relations between these entities [Song
et al., 2018, Krasakis et al., Verga et al., 2018, Wadden et al., 2019] and reported findings
[Lehman et al., 2019]. We build on these models in the present work.

In oncology research specifically, classification models have been applied to designate
staging and assess cancer recurrence [Deng et al., 2019, Hughes et al., 2020, Friedlin et al.,
2010]. Fiszman et al. [2010] used semantic analysis of text to identify cardiovascular risk
factors in medical literature. Elsewhere, Lossio-Ventura et al. [2016] explicitly considered
the long-term aim of constructing an obesity-cancer KB, though their work was limited to
studies in obesity and titles/abstracts, rather than full-texts.

None of the aforementioned works have attempted to infer population characteristics or
risk estimates from the cancer in genetics literature, despite the importance of establishing a
centralized KB for the cancer in genetics literature, and the burden that manually curating
and maintaining this resource currently imposes. This effort is a first step toward building
models to mitigate manual workload, thereby allowing KB construction to scale as the
literature continues to rapidly grow.
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6. Conclusions

We have proposed the practically important task of extracting relevant information from
cancer genetics literature, with the aim of helping domain experts (clinicians) maintain an
up-to-date knowledge base of genetics in cancer results.

We acquired full-text PDFs of gene-cancer studies from which clinicians previously ex-
tracted key structured information from full-texts into a database, and we used these entries
to induce distant supervision over spans within the corresponding articles. Using these de-
rived (weak) labels, we trained a classification model to identify key snippets that relate to
ascertainment bias, a key consideration in such evidence.

We then considered the more challenging task of extracting <germline-mutation,

risk> pairs as an entity-relation problem. For this we proposed a BERT-based joint entity
tagging and relation extraction model. Through ablation we observe: (1) This joint ap-
proach fares substantially better than a two-step pipelined approach, and, (ii) Initialization
to BERT parameters learned “in-domain” also provides a considerable performance increase
[Beltagy et al., 2019].

Going forward, we hope to evaluate the utility of these models in practice to assess the
degree to which they actually help expedite knowledge-base construction. This work will
assist the domain experts in: assessing study quality quickly and accurately, identify the
most representative population-level risk for a specific gene-cancer association. Ultimately,
risks identified in the primary literature may serve as a foundation for providing individu-
alized cancer prevention practice and clinical care. More generally, we hope this first effort
spurs additional work on models for automatically making sense of the genetics in cancer
literature.
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Appendix

To evaluate the effectiveness of our models, we analyse a range of outputs at the inference
level to gauge what our model learns, and to assess its usability with respect to variations
in input data.

For ascertainment classification, we inspect some of the misclassified sentences in the
test set to highlight their commonalities, and to better understand what our models learn.

• Example false positives:

– Only 129 unique eligible studies met our criteria for inclusion and had sufficient
data available for extraction.

– However, after sequencing a larger cohort of patients in those populations
(figure 2), a significant enrichment in these populations was observed among
cases.

– Ethnicity is usually based on 80% of the study population, and if not re-
ported, we considered ethnicity as the country of publication.

– Male patients with breast or renal cancer had an increased prevalence of thyroid
caner of 19-and three-fold, respectively.

– This step yielded 560 studies containing 66 snvs in 51 different genes that were
eligible for the inclusion criteria in this study.

• Example false negatives:

– Families fulfilling amsterdam ii criteria with normal expression of mmr proteins
or microsatellite stable tumors were considered as familial crc type x, and genetic
analysis of pole and pold1 was performed.

– Finally, the references of all studies included were scanned, as were reference lists
from relevant reviews and meta-analyses.

– All proven or obligate mmr gene mutation carriers from the hnpcc register were
eligible for the study and are referred to as the lynch syndrome cohort.

– We chose a threshold of at least 4 studies before performing a meta-analysis for
subgroups.

– Forty-five of the patients diagnosed with malignancy possessed mutations that
result in truncation of the expressed protein.

We often observe that false positives include certain aforementioned keywords that fre-
quently appear in true ascertainment sentences. For example, in the ascertainment clas-
sification task, false positive examples often include the words population, registry, de-
mographic, inclusion criteria, and so on. This indicates that even when the sentence is
mislabelled, the prediction still relates to the original concepts.

On our second task of extracting entity-relation pairs, we perform an ablation experi-
ment to test the effect of contextualized representations of spans while jointly classifying
entities and their relations. We primarily define three tasks according the way we alter our
test data.
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Task Entity Relation

F1 P R MCC F1 P R MCC

A 0.74 0.82 0.69 0.55 0.60 0.67 0.54 0.30
B 0.77 0.83 0.72 0.57 0.62 0.69 0.57 0.33
C 0.68 0.76 0.64 0.39 0.51 0.55 0.48 0.28

Table 6: Test set results for fuzzy inputs at inference time on the ER extraction task with
the joint transformer based model (SciBERT).

• Task A: In the spans containing risk-estimate values (floating numerics), we increase
the value of all numeric tokens by an order of 103.

– Example: These included CDKN2A, with mutations in 0.30% of cases and
0.02% of controls (OR, 12330; 95% CI, 5430-25610); True <germline-mutation,
cancer>, in this case corresponds to, <CDKN2A, 12330>.

• Task B: In the spans containing risk-estimate values (floating numerics), we decrease
the value of all numeric tokens by an order of 103.

– Example: These included CDKN2A, with mutations in 0.30% of cases and
0.02% of controls (OR, 0.01233; 95% CI, 0.00543-0.02561); True <germline-mutation,
cancer>, in this case corresponds to, <CDKN2A, 0.01233>.

• Task C: In the spans containing risk-estimate values (floating numerics), replace some
true risk estimates with random non-numeric tokens.

– Example: These included CDKN2A, with mutations in 0.30% of cases and
0.02% of controls (OR, XYZ; 95% CI, 5430-25610); True <germline-mutation,
cancer>, in this case corresponds to, <CDKN2A, XYZ>.

Table 6 summarizes our results on these three tasks. While for Task B, results remains
relatively stable, we observe a drop in performance for Task C.


	Introduction
	Methods
	Overview
	Data and Targets
	Deriving Distant Supervision for Ascertainment Classification
	Joint Entity-Relation Extraction to Determine Risk Estimates

	Experimental Setup
	Results
	Related Work
	Conclusions
	Acknowledgements

